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atractive and we show that the proposed MMSE one-tap FDE 
can achieve almost the same bit error rate (BER) performance 
as the optimum MMSE equalizer. Furthermore, we also show 
that the proposed method can also be used for an efficient 
frequency diversity scheme. Finally, we demonstrate the 
effectiveness of the proposed methods via computer 
simulations.  

Bold capital letters will be used to denote column vectors or 
matrices.  An Μ×Μ identity matrix will be denoted by IM and 
all-zero matrix of size M×N will be denoted by  0M N× . We will 
use E[ · ] to denote ensemble average, tr{ · } for trace, || · || for 
Euclidean norm, ( · )H for Hermitian transpose, ( · )T for 
transpose, and  ( · )*  for complex conjugate. 

II. PROPOSED FSE FOR THE SC-CP SCHEME 
Figs.1 and 2 show the configuration and the block diagram 

of the SC-CP scheme with the proposed T/K-FSE with the one-
tap FDE. In Fig. 2, s(n) denotes an M×1 vector of the n-th input 
signal block, r(n) is a KM×1 vector of received signals after 
oversampling, and ŝ(n) is an M×1 vector of the equalizer output. 
The T/K spaced oversampling and corresponding 
downsampling at the receiver can be expressed as the expander 
operation (inserting K-1 zeros between two neighboring 
symbols) at the transmitter and the decimator operation 
(picking up every K-th symbols) at the receiver in the discrete 
time signal model [6]. In the block transmission settings, the 
expander is given by a KM×M matrix U, whose (K(m-1)+1)-th 
row (m=1, ⋅⋅⋅ ,M) is equal to the m-th row of IM and the other 
rows are the zero row vectors of  01 M× . For example,   

where K=2 and M=3. On the other hand, UH stands for the 
decimator. H denotes a KM×KM circulant channel matrix and 
the first column is given by h=[ hc(0), hc (T/K), hc (2T/K),  ⋅⋅⋅ ,  

                

(1) 



 

hc (KL·T/K), 0, ⋅⋅⋅ , 0 ]T , where hc(t) denotes the impulse 
response of the channel including the transmitting (Tx) and Rx 
filters and L is the order of the response. WM denotes the M-
point DFT matrix where the (m, n) element (m, n = 1, 2, ⋅⋅⋅ , M) 
is given by  +
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Figure 3.  The block diagram of the proposed T/K-FSE with one-tap FDE 

(2)

and  WM
H

  is the M-point IDFT matrix.  
 

The circulant matrix H can be diagonalized by pre- and 
post- multiplication with KM-point DFT and IDFT matrices 
[7], i.e., H=WKM

HΛhWKM, where Λh = diag{ λh(1), λh(2), ⋅⋅⋅ , 
λh(KM)} is a KM×KM diagonal matrix whose diagonal 
elements are the KM-point DFT of  h. Thus r(n) can be written 
as   (7)

(3) 

where n(n) is a KM×1 noise vector. The equalizer output ŝ(n)  
is given by 

where Λf  = diag{ λf(1), λf(2), ⋅⋅⋅ , λf(KM)} is a KM×KM 
diagonal matrix of the FSE weights.  

III. SIMPLIFICATION OF THE PROPOSED T/K-FSE 
In this section, we simplify the configuration for the 

proposed T/K-FSE with one-tap FSE. Since post-
multiplication with U is the operation to extract every K-th 
columns of the multiplied matrix, the (m, n) element of Ũ := 
WKMU is given by  

where l:= m-1 (mod M),  m = 1, 2, ⋅⋅⋅ ,  KM, and n = 1, 2, ⋅⋅⋅ , 
M. Thus, we have     

F

where Λfk  = diag{ λf1((k-1)M+1), ⋅⋅⋅ , λf(kM) } ( k= 1, 2, ⋅⋅⋅ , 
K ) is an M×M submatrix of Λf. Therefore, the configuration 
of the T/K-FSE can be redrawn as in Fig. 3. Furthermore, 
defining an M×M submatrix Λhk = diag{ λh((k-1)M+1), ⋅⋅⋅ ,  
λh(KM) } ( k= 1, 2, ⋅⋅⋅ , K ) , we have  

(4) 

 
(8)

 

IV. DERIVATION OF THE OPTIMUM FSE WEIGHTS  
In this section, we derive the ZF and MMSE based 

equalizer weights of the proposed T/K-FSE with the one-tap 
FDE. Moreover, we also show the optimum MMSE T/K-FSE 
weights for comparison purpose.  

A. Proposed ZF T/K-FSE with one-tap FDE  
First, we derive the ZF criterion-based equalizer weights 

for the proposed T/K-FSE with the one-tap FDE. The ZF 
condition is given by ŝ(n)=s(n) in the absence of noise. Thus, 
the condition for the proposed FSE is given by 

(5)
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Figure 2.  The  block diagram of  SC-CP scheme with the proposed one-tap T/K-FSE 
 
we can rewrite the equalizer output ŝ(n) as  

(6)

w

 (9)

here K×1 vector νm = [ λf
*(m) λf

*(M+m) ⋅⋅⋅  λf
*((K-1)M+m) ]T 



and  ξm=[λh(m) λh(M+m) ⋅⋅⋅  λh((K-1)M+m) ]T. When K ≥ 2, (9)  
has a certain freedom in the choice of νm as shown in [5]. 
Hence, we also exploit this freedom to minimize the effect of 
additive noise at the equalizer output, i. e., minimize E[|| e(n)||2 

], where  

Denoting the autocorrelation matrix of n(n) as R, E[||e(n)||2] 
can be calculated as 

 
(10)
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Using νm, ξm and Řm, (16) can be represented as 

  
re Ř := WKMRWKM
H and the (i, j) element (i, j = 1, ⋅⋅⋅ , K) 

Řm is equal to the (m+(i-1)M, m+(j-1)M)) element of Ř. By 
imizing (11) under the constraint (9), the ZF T/K-FSE 
ghts is derived as    

 (12) shows the capability of the proposed FSE to avoid the 
se-enhancement, which deteriorates the BER performance 
he SSE based on ZF criterion. For example, if we assume R 
n
2IKM  (i. e., Řm =σn

2IK) to simplify our discussion, the ZF 
alizer weights of the SSE (K=1) and the ZF T/K-FSE can be 
resented as  

en |λh(m)| is nearly equal to zero, |λf(m)| tends to be 
emely large value and amplify the channel noise in the ZF 
. We do not have this problem for the ZF T/K-FSE, since it 
nlikely that all |λh(l+1+(k-1)M)| (k=1, ⋅⋅⋅ , K) are nearly 
al to zero.  

Proposed  MMSE T/K-FSE with one-tap FDE 
Next, we derive the MMSE criterion-based equalizer 
ghts for the proposed T/K-FSE with the one-tap FDE. The 
n-squared error (MSE) is given by  

uming E[ s(n)n(n)H ] = 0M KM× , and E[ s(n)s(n)H ] =  σs
2IM, 

have  

          
(17)(11)

Since the optimum νm, which minimizes (17), satisfies ∂(MSE)/ 
∂νm

* =  0K 1× , we have 

(18)
 

 
Assuming Řm is nonsingular and using matrix inversion lemma 
[7], the MMSE T/K-FSE weights is given by  

(12)

 
(19)
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singular, by directly working on (3) and (4) 
 any configuration of Λf, we have the 
/K-FSE weight matrix Λf  as  

 
(20)

gonal, Λf is also diagonal and the optimum 
an be realized with the one-tap FDE. Note 
f (20) are identical to that of (19) in such a 
gs, one may assume the channel noise being 

ral assumption satisfies the condition above. 
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 noise process through the Rx filter is 

 and the optimum MMSE equalizer is not 
e-tap FDE. In Sec. Ⅶ, we will show the 

performances by computer simulations. 
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Figure 4.  The configuration of proposed  frequency diversity method  using T/K-FSE 

 

V. EQUALIZER WEIGHTS FOR OFDM SCHEME  
So far, we have discussed the T/K-FSE for the SC-CP 

scheme, however, OFDM is also an important block 
transmission scheme with the CP.  

The block diagram representation of the OFDM scheme 
with the proposed FSE is given by substituting WM

H s(n) for 
s(n) and  WM ŝ(n) for ŝ(n)  in Fig. 1. Moreover, both of WM

H 
and WM  are unitary matrices. Therefore, we can utilize the 
same equalizer weights as the SC-CP scheme for the OFDM 
scheme. 

VI. FREQUENCY DIVERSITY METHOD USING PROPOSED FSE 
Here, we point out another interpretation of the proposed 

method. Basically, the FSE is used to improve the performance 
by taking advantage of the received signal components beyond 
the Nyquist frequency, which is commonly observed in band-
limited signals, such as a raised cosine spectrum pulse [8]. For 
the proposed FSE system, this is the case when the Tx and the 
Rx filters have  the same bandwidth as the Nyquist rate. 

On the other hand, if we set the bandwidth of the Tx and 
the Rx filters in the proposed system to be twice or more 
greater bandwidth and use the expander operation to the 
original symbols, the transmitted signal has multiple copies of 
the basic spectrum. Moreover, since the proposed T/K-FSE is 
designed to utilize the received signal components up to K 
times greater bandwidth than the Nyquist rate, the proposed 
FSE can achieve not only the equalization but also the diversity 
combining simultaneously, without any change in the 
configuration or the equalizer weights. Figure 4 shows the 
system configuration of the proposed frequency diversity 
method using the proposed T/K-FSE. Therefore, by just 
changing the bandwidth of the Tx and the Rx filters, the 
proposed method can easily realize the frequency diversity.  

VII. PERFORMANCE EVALUATION 
In our simulation, we consider 10-path Rayleigh fading 

channels with an exponentially decaying power profile. We set 
the channel order L=10, the decaying factor 0.5, and the 
temporal position of each path is randomly determined and is  
uniformly distributed within the interval of [0:LT]. We have 
employed QPSK scheme with coherent detection for 
modulation/demodulation scheme, and set the block size 
M=256, the CP length 32 and assumed the channel noise to be 
AWGN. Also, we have employed a square-root raised-cosine 
filter for the Tx and the Rx filters with the roll-off factor of α = 

0.5. The whole response of the channel including the Tx and 
Rx filters is assumed to be known to the receiver. Following 
results on BER performance are obtained via 3000 Monte-
Carlo realizations. 

Figs. 5 and 6 show BER performances of the SC-CP and 
OFDM schemes using the proposed FSE (the T/2, T/4-FSE 
with the one-tap FDE and the optimum MMSE T/2-FSE) and 
the SSE versus the energy per bit to the noise power density 
(Eb/N0). The bandwidth of the pass band of the filters is set to 
be the same as the symbol rate. From the figure, we can see 
that the proposed FSE can improve the performance compared 
with the SSE on each case. On the other hands, there is no 
improvement between the proposed T/2 and T/4-FSE with the 
one-tap FDE. This is because the performance improvement by 
using the FSE depends on the excess bandwidth of the 
transmitted signal spectrum. In our situations, the transmitted 
signal bandwidth is limited by Tx and Rx filters up to 3/2 times 
greater than the Nyquist rate. Hence, K=2 is enough to 
perfectly observe the received signal, and we can’t expect any 
further improvement by observing beyond twice the bandwidth. 
Also the figures show that the proposed MMSE T/2-FSE with 
the one-tap FDE can achieve almost the same performance as 
the optimum MMSE T/2-FSE in both the SC-CP and OFDM 
schemes. One possible reason for this is that, if M is 
sufficiently large, Ř can be approximated by the  diagonal 
matrix, and both weights are equivalent to each other. 
Therefore, we can improve the performance of block 
transmission systems by the proposed one-tap FSE with its 
simple implementation with the small loss in the BER 
performance.  

Figs. 7 and 8 also show the BER performances of the SC-
CP and OFDM schemes with the proposed frequency diversity 
methods using the T/2 and T/4-FSE with the one-tap FDE 
versus Eb/N0.  Here all the settings are same as in Figs. 5 and 6, 
except for the pass bandwidth of the Tx and Rx filters. The 
bandwidth is set to be the symbol rate times K. Both in the SC-
CP and OFDM schemes, we can see significant improvement 
in the BER performance due to the frequency diversity effect. 
This shows that, the proposed frequency diversity method can 
efficiently provide diversity gain with slight increase in 
complexity.  

VIII. SUMMARY 
We have proposed the T/K-FSE for block transmission with 

CP systems and shown the effectiveness of the proposed 
method over the SSE by computer simulations. What is more, 
we have shown the proposed one-tap frequency domain T/K-



FSE achieves the sufficient performance compared with the 
optimum MMSE FSE, despite of its low computational 
complexity. In addition, we have also proposed the simple 
frequency diversity methods for block transmission with CP 
systems using the proposed FSE, and revealed its significant 
performance improvement by computer simulations.  
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