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ABSTRACT
In recent years digital terrestrial broadcasting systems
have been developed where OFDM signals are used for
data transmission with single frequency network (SFN).
But in a SFN relay station the effect of the coupling
wave from the transmitter to the receiving antenna is
significant and needs to be cancelled. In this paper a
simple adaptive filter method is applied to this problem.
The stationary point of the conventional LMS algorithm
is first derived and its local stability is examined by us-
ing the averaging method. It is found that this algorithm
has a bias. Then a modified algorithm is proposed to re-
move this bias. Simulation results show the validity of
the theoretical findings.

1. INTRODUCTION

In recent years digital terrestrial broadcasting systems
have been developed where OFDM (orthogonal fre-
quency division multiplexing) signals are used for data
transmission with single frequency network (SFN). The
transmitted signal from the base station is attenuated so
that the amplified signal is retransmitted at the SFN re-
lay station. But at the relay station the effect of the cou-
pling wave from its own transmitter to its own receiv-
ing antenna is significant and needs to be cancelled. In
[1][2], rather complicated methods utilizing pilot sig-
nals in OFDM system have been proposed for cancel-
lation of this effect. This problem is similar to that of
hearing aids [3][4]. In hearing aids there is an acoustic
feedback path from the speaker to the microphone and
this causes annoying effects such as whistling and howl-
ing. An adaptive filter is used to model this acoustic
feedback path and cancel its effect. In [4] the stationary
point of the conventional LMS algorithm and its local
stability condition were derived by first expressing the
algorithm in frequency domain and then applying the
averaging method to it. In this paper, a simple adaptive
filter method is applied for continuous cancellation of
the effect based on the results obtained for the problem
of hearing aids. First by a method that is more direct
than that in [4] but is still considering the causality con-
straint, an explicit expression of the stationary point is
derived. Also, the stability near this point is examined.
Similarly to the situation in hearing aids, the stationary

Figure 1: Block diagram of the coupling wave canceller

point of the adaptive filter contains a bias from the trans-
fer function of the path of the coupling wave. Then, a
method to remove this bias is also proposed. Finally,
simulation results are presented to see the validities of
the theoretical findings.

2. DERIVATION OF THE STATIONARY POINT

Figure 1 shows the block diagram of the coupling wave
canceller with the conventional adaptive filter where
x(n) is the OFDM signal transmitted through a multi-
path channel which is modeled as a zero-mean cyclo-
stationary process [5] andC(z), G(z) denote the trans-
fer functions of the coupling wave path and the ampli-
fier characteristics of the transmitter in the relay station,
respectively. ThoughG(z) is fixed and known,C(z) is
unknown and may be slowly time-varying. To cancel
this effect continuously, an adaptive filter denoted by
W(z) with the conventional LMS algorithm is used. Al-
though this seems to be a typical adaptive filter problem
for noise canceling, actually it is not so. Usual adaptive
filter problems treat cases where the transfer function
to be cancelled is in the feedforward path. But here the
adaptive filter tries to cancel the effect of the coupling
wave in the feedback path. There seem no systematic
treatments for this case in the literature. The signals(n)
in Fig. 1 is expressed as

s(n) = x(n)+C(z)G(z)s(n)−W(z)s(n). (1)



Hence,

s(n) = Q(z)x(n) (2)

with

Q(z) =
1

1− (C(z)G(z)−W(z))
(3)

where the adaptive filter is treated as time-invariant for
the moment ,z−1 denotes the unit time delay opera-
tor andQ(z) is assumed to be stable, i.e., the zeros of
1−(C(z)G(z)−W(z)) are all inside the unit circle. The
conventional LMS algorithm for cancellation of the ef-
fect of the feedback path is

w(n+1) = w(n)+ µs(n)s∗(n) (4)

with

w(n) = [w0(n) w1(n) . . . wN(n)]T (5)

s(n) = [s(n−1) s(n−2) . . . s(n−N)]T (6)

W(z) = w∗0 +w∗1z−1 + . . .+w∗Nz−N (7)

wherewi(n) is the i-th weight of the adaptive filter,µ
is the positive step size and′′∗′′ denotes the complex
conjugate. In (4) the error signals(n) is also used for
the input signal. This is a quite unusual situation in the
adaptive filtering literature. The stationary point of the
adaptive algorithm in (4) is determined by

E[s(n− i)s∗(n)] = 0 (i = 0,1, . . . ,N). (8)

We should exclude the condition fori = 0 in (8), oth-
erwises(n) = 0 is followed. So , we set in (5) and (7)
that

w0 = 0 (w0(n) = 0). (9)

Also, in (8) the expectation operation is interpreted as
the time average as well as the ensemble average, since
x(n) is a cyclostationary process and the expected value
about this process is periodically time-varying. So we
can treatx(n) as a stationary process with the spectral
densityP(ejω) which is equal to the cyclic spectrum of
cycle frequency 0 [5][6]. Hence, from (2), (8) can be
expressed as

1
2π

∫ 2π

0
e− jiωQ(ejω)P(ejω)Q∗(ejω)dω = 0

(i = 1, . . . ,N). (10)

By the change of variablesz= e− jω , (10) can be rewrit-
ten as

1
2π

∫ 2π

0
zi−1×zQ(z−1)Q̃(z)P(z−1)dω = 0. (11)

where

Q̃(z) =
1

1− (C̃(z)G̃(z)−W̃(z))

with

W̃(z) = w1z−1 + · · ·+wNz−N

and similarly forC̃(z), G̃(z). Although (10) holds for
i = 1, . . . ,N, if N is large enough, it is reasonable to
find a solution that satisfies (11) for alli−1≥ 0. For
this, the integrand afterzi−1 in (10) must be a series of
positive powers ofz. Hence, we have

[zQ(z−1)Q̃(z)P(z−1)]+ = 0 (12)

where[.]+ denotes the extraction of the causality part,
that is, the constant term and negative powers ofz. Let
the spectral factorization ofP(z) be

P(z) = R(z)R̃(z−1)γ2 (13)

whereR(z) is of minimum phase and its constant term is
1. SinceQ(z) is stable,1/(R(z−1)Q(z−1)) is expanded
in nonnegative power ofz and soR(z−1)Q(z−1) can be
factored out from[.]+ in (12). So ,we have

[zR̃(z)Q̃(z)]+ =
[

zR̃(z)
1− (C̃(z)G̃(z)−W̃(z))

]

+
= 0. (14)

To obtainR(z) in (14) we first consider the case where
x(n) is itself an OFDM signal with the data lengthM,
the length of the cyclic prefixL and the total length of
one blockT = M +L. Let xk(n) = x(nT +k) with

xk(n) =
M−1

∑
i=0

si(n)ej2π i(k−L)/M (k = 0, . . . ,T−1) (15)

wheresi(n) is an uncorrelated data sequence with zero
mean and varianceσ2. Then,

E[xk+τ(n)x∗k(n)] = σ2
M−1

∑
i=0

ej2π iτ/M

×
T−1

∑
r=0

δ (r− (k+ τ)) (16)

whereδ (r) = 0 for r 6= 0 and 1 forr = 0 [5]. The cyclic
correlation function with cycle frequency 0 is just the
average of (16) with respect tok from 0 toT−1 and is
given by

p(0;τ) =
σ2

T
(T−|τ|)

M−1

∑
i=0

ej2π iτ/M (|τ | ≤ T)

= 0 (|τ|> T) (17)



So we have

p(0;τ) =
σ2

T
(Tδ (τ)+Lδ (τ−M)+Lδ (τ +M))

and

P(z) =
LMσ2

T

(
T
L

+zM +z−M
)

(18)

with the spectral factor

R(z) = 1+αz−M (19)

whereα + 1/α = T/L andγ = σ
√

LM/αT. Since in
generalT/L > 2, we can findα such that0 < α < 1.
Now we obtain an explicit solution of (14). Since
R̃(z)Q̃(z) is causal, from (14) it must be some constant
β ∗. Hence, the stationary pointW0(z) satisfies

1− (C(z)G(z)−W0(z)) =
1
β

R(z). (20)

From (7),(9) and (19), if the delayz−1 is included in
G(z), i.e.,

G(z) = z−1G0(z) (21)

thenβ = 1 and

W0(z) = C(z)G(z)+αz−M. (22)

That is, there is a bias termαz−M. Before presenting a
modified algorithm to remove this bias, in the next sec-
tion the local stability near the stationary point is dis-
cussed.

3. THE LOCAL STABILITY PROPERTY

Here we use the averaging or ODE (ordinary differen-
tial equation) method to examine the local stability of
the stationary point (22). The ODE describing the aver-
age behavior of the adaptive algorithm (4) is

ẇ = f(w)

wheref(w) = ( f1(w) . . . fN(w))T with

fi(w) = E[s(n− i)s∗(n)].

The linearized ODE near the stationary pointw0 corre-
sponding toW0(z) in (22) is described as

ẇ =−Φ(w−w0)

where from (8) and (10) the(i,k)th elemet ofΦ is given
by

Φik = − ∂
∂wk

1
2π

∫ 2π

0
ziQ(z−1)Q̃(z)P(z−1)dω|w=w0

= − 1
2π

∫ 2π

0
ziQ(z−1)z−kQ̃2(z)P(z−1)dω|w=w0.

(23)
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Figure 2: Block diagram of the unbiased coupling wave
canceller for a multpath channel

In (23) we use the differential rule∂w∗k/∂wk = 0. If Φ+
ΦH is positive definite, the Lyapunov functionV(w) =
||w−w0||2 is decreasing, sincėV(w) ≤ 0 where the
equality holds only atw = w0. Hence,w0 is a locally
stable stationary point. But from (23) for any vector
ξ = [ξ1 . . .ξN]T

ξ H(Φ+ΦH)ξ

=
1

2π

∫ 2π

0
|∑

i

ξiz
−i |2|Q̃(z)|2γαRe(1+αz−M)dω

> 0, (24)

so the local stability is guaranteed.

4. UNBIASED IDENTIFICATION OF THE
FEEDBACK PATH

A simple modification to remove the bias in (22) is pre-
sented. Instead of usings(n) directly in (4), the follow-
ing filtered signal

s′(n) =
1

R(z)
s(n) (25)

is used. This is a whitening operation. That is, (25) is
written as

s′(n) =−αs′(n−M)+s(n). (26)

Then, (12) is replaced by
[

1

R(z−1)R̃(z)
zQ(z−1)Q̃(z)P(z−1)

]

+
= 0, (27)

so that from (13) the stationary point in this case satis-
fies

[zQ̃(z)]+ =
[

z

1− (C̃(z)G̃(z)−W̃0(z))

]

+
= 0. (28)
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Figure 3: Plots of the cancellation errors using (4)

From thisQ̃(z) must be 1 , so we have

W0(z) = C(z)G(z). (29)

This means that unbiased identification of the feedback
path and continuous cancellation of the effect of the
coupling wave are attained. The local stability near this
point is also established, since corresponding to (24) we
have

ξ H(Φ+ΦH)ξ =
1

2π

∫ 2π

0
|∑

i

ξiz
−i |2P(z−1)dω > 0.

Next we consider the case that the OFDM signal is
transmitted through a multipath channel whose transfer
functionB(z) is of FIR type. Hence,P(z) in this case is
given by

P(z) = B0(z)B̃0(z−1)R(z)R̃(z−1)γ2 (30)

where B0(z) is a stable polynomial satisfying
B0(z)B̃0(z−1) = B(z)B̃(z−1). The filtered signal
s′(n) in (25) is also used in the adaptive filter with the
delay constraint

w0(n) = . . . = wm−1(n) = 0, (31)

then (8) holds fori ≥ m and corresponding to (14) we
have

[
zmB̃0(z)

1− (C̃(z)G̃(z)−W̃(z))

]

+
= 0. (32)

So if m is taken to be larger than the order ofB(z), the
numerator inside[.]+ in (32) is non-causal. Also, if we
set

G(z) = z−mG0(z), (33)
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Figure 4: Plots of the cancellation errors using the al-
gorithm with filtered signals in (25)

Q̃(z) is expanded as1+ z−mqm + . . .. Hence, the sta-
tionary point in this case is also given by (29) and it is
locally stable. Fig. 2 shows the block diagram of the
unbiased coupling wave canceller for a multipath chan-
nel.

In actual situations some tones in the OFDM signal
are not used. For example, if“higher”tonesi = M/2−
∆, . . . ,M/2+∆ are not used [2], this interval is excluded
in the summation in (17). But in this case we cannot
obtain a closed form expression of the spectral factor
like (19) and we need to use a numerical procedure for
spectral factorization , for example, the algorithm in [7]
to obtain the stable polynomialR(z) of orderT.

5. SIMULATION RESULTS

To see the validities of the above theoretical findings,
some preliminary simulation results are presented. The
OFDM signal is generated with BPSK data of ampli-
tude 1 andM = 64, L = 16 (T = 80). In this case
α = 0.2087. Also, we setC(z) = 0.4z−1andG(z) = 2.
Fig. 3 shows the plots of the squared cancellation er-
ror (SCE)|x(n)− s(n)|2 versus the iteration numbern
when (4) is used withµ = 0.01. But due to the bias
it does not converge to zero as shown. Fig. 4 shows
the plots when the filtered signals′(n) is used in (4)
with µ = 0.01. As is seen from this figure, the can-
cellation is perfect. Fig. 5 presents the results for the
case where the OFDM signal is transmitted through the
channelB(z) = 1+1/3z−1 with m= 2. Again, the can-
cellation is perfect.

6. CONCLUSION

We have presented a method for obtaining the stationary
point of the conventional LMS adaptive filter algorithm
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Figure 5: Plots of the cancellation errors for the signal
through a multipath channel

for cancellation of the effect of the coupling wave in
SFN relay stations. Also, the local stability near this
point has been shown. Based on the above findings a
new algorithm using the whitening operation has been
devised to attain the perfect cancellation. It is a future
work to implement this algorithm in an efficient way
when the length of the whitening filter is very long.
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