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ABSTRACT

Recently, marginalized particle filter (MPF) has been ap-
plied to blind symbol detection problems over selective fad-
ing channels. By marginalizing out the state appearing lin-
earity and Gaussianity in the dynamics, the MPF can re-
duce the computational complexity, which is one of the main
drawbacks of the standard particle filters. In this paper, we
consider application of the MPF to the problem of blind
detection in the presence of the In-phase/Quadrature-phase
(IQ) imbalance and carrier frequency offset (CFO) which are
inevitable performance degradation factors caused by the im-
perfection of analog front-end in wireless transceivers. Due
to the existence of such impairments, the resulting state-
space model of the problem is non-linear and non-Gaussian
and the computationally efficient MPF is not applicable. To
cope with this, we employ the auxiliary variable resampling
technique to estimate IQ imbalance and CFO parameters.
Simulations are provided that demonstrate the effectiveness
of the proposed MPF detector.

1. INTRODUCTION

Particle filter (PF) [1, 2, 3], that has recently emerged in the
fields of statistics and engineering, has shown great promise
in solving a wide class of nonlinear and/or non-Gaussian
problems. While the PF is fairly easy to implement and
tune, the main drawback is its high computational complex-
ity. One remedy to this problem is to analytically marginal-
ize out the state appearing linearity and Gaussianity in the
dynamics. The resulting PF is called as the marginalized
particle filter (MPF), also known as a Kalman PF or Rao-
Blackwellised PF [4]. The MPF is a potential combination of
the standard PF and the Kalman filter [5] [6], and it is well
known that the MPF can not only reduce the computational
effort but also obtain better estimates compared with the
standard PF in some cases [7]. Recently, the MPF has been
applied to a blind detection of a symbol sequence transmitted
over frequency selective fading channels [8] [9]. By assum-
ing a linear and Gaussian state-space model to represent the
channel distortion, the marginalized particle filtering detec-
tor (MPFD) can obtain the maximum a posterior (MAP)
estimate directly without explicit channel estimation.

Meanwhile, one of the performance degradation factors
in the implementation of wireless systems is the impair-
ment caused by analog processing due to component imper-
fections. In most cases, such impairments cannot be effi-
ciently or entirely eliminated in the analog domain due to
power, area, and cost trade-offs. Therefore, efficient com-
pensation techniques in the digital baseband domain are
needed for the transceivers. Significant sources of such im-
pairment are a carrier frequency offset (the CFO) and an In-
phase/Quadrature-phase (IQ) imbalance [10]. Both of them
are introduced at the up and down frequency conversion at
the transceivers. The IQ imbalance is misalignment between

the I and Q paths: the real and imaginary parts of the com-
plex signal, and the CFO is mismatch of frequencis between
the local oscillators (LOs) at the transceivers. Degrees of
such imperfections depend on each transceiver and thus un-
known to the receiver. When we consider the blind particle
filtering detector for systems with such analog imperfections,
since the resulting space-state model is non-linear and non-
Gaussian due to the unknown CFO and IQ imbalance pa-
rameters, the computationally efficient MPFD can not be
applied. Obviously, the standard PF is still applicable, how-
ever it is unattractive to lose the advantage of the MPFD
due to such inherent analog imperfections.

In this paper, we propose the MPFD with auxiliary vari-
able resampling for systems with the IQ imbalance and the
CFO. The auxiliary variable resampling technique [11] is ba-
sically designed to cope with the essential weakness of the
PF, i.e., performance degradation due to the existence of an
outlier. Here, we use the technique for different purpose,
i.e., to estimate the unknown parameters in the state-space
model by exploiting approximate samples of the desired dis-
tribution at previous time instants. In the proposed method,
by using the estimates obtained from the resampling proce-
dure, the MPF can efficiently marginalize out the unknown
channel and estimate the transmitted sequence. We demon-
strate the significant performance improvement by using the
proposed MPFD later in our computer simulations. In the
followings, vectors are indicated in bold and scalar param-
eters in normal font. Superscripts ∗, T, and H represent
conjugate, transpose, and Hermitian transpose, respectively.

2. PROBLEM FORMULATION

Let us consider the blind detection problem over frequency
selective channels, where the original transmitted symbols
st ∈ A (here, A = {an}, n = 1, · · · , N denotes a complex
signal constellation, and the time index t = 0, 1, 2, · · · ,) are
complex modulated with differential coding in order to re-
solve the phase ambiguity inherent to any blind receiver. Be-
fore transmission, they suffer from transmitter (Tx) IQ im-
balance in the analog domain and then IQ distorted signals
ŝt are transmitted in a frame of length T +1 symbols through
the frequency selective fading channel. Furthermore, at the
receiver front-end, the received signals are distorted by not
only the receiver (Rx) IQ imbalance but also the CFO. We
assume that the channel coefficients are time-invariant for
the duration of the frame. In addition, the symbols pre-
ceding the current time frame: st (t = · · · , −1) are also
assumed to be known.

Let εtx denotes the amplitude imbalance and φtx is the
phase imbalance between the I and Q branches introduced
at the transmitter, complex baseband expression for the IQ



imbalance effect on the ideal symbol st is given by [10] as

ŝt = (1 + εtx) cos(φtx)<{st} − (1 + εtx) sin(φtx)={st}
−i · (1− εtx) sin(φtx)<{st}+ i · (1− εtx) cos(φtx)={st}

= αst + βs∗t , (1)

where <(·) and =(·) denotes the real and imaginary parts,
respectably, and

α := cos(φtx) + i · εtx sin(φtx), (2)

β := εtx cos(φtx)− i · sin(φtx). (3)

In general, as given by (1), the desired signal st is interfered
by its own complex–conjugate or image s∗t . The formal image
rejection ratio (IRR) is given by,

IRR = E[|αst|2]/E[|βs∗t |2] = |α|2/|β|2. (4)

With practical imbalance values, the IRR is in the order
of 20–30 dB [12] and these IRR levels are insufficient in
any practical transceiver with spectrally efficient modulation
techniques, and thus, digital compensation is really needed.
Using the channel impulse response h(t) (t = 0, · · ·L− 1) of
the length L and a circular complex Gaussian noise compo-
nent vt ∼ Nc(0, σ2), the received signal r̂t before IQ distor-
tion and the CFO at the receiver is given by

r̂t =

L−1∑
l=0

h(l)ŝt−l + nt = αhTst + βhTs∗t + vt, (5)

where we define st = [st · · · st−L+1]
T, h = [h(0) · · ·h(L −

1)]T. At the receiver front–end, the received signals suffer
from both the IQ imbalance and the CFO. The time domain
effect of the CFO ω on an incoming signal r̂t is a phase
rotation θ := exp{j2πω} proportional with time. When the
CFO is present together with Rx IQ imbalance, the resulting
baseband signal r̂t can be written as [13]

rt = γθtr̂t + δθ−tr̂∗t , (6)

where γ and δ are the Rx IQ imbalance parameters defined
by using the amplitude imbalance εrx and the phase imbal-
ances φrx, i.e.,

γ := cos(φrx) + i · εrx sin(φrx), (7)

δ := εrx cos(φrx)− i · sin(φrx). (8)

Finally, we can formulate the dynamic state–space of the
form

State equation: st = Tst−1 + ut,

Observation equation:

rt = αγθthTst + β∗δθ−thHst

+ βγθthTs∗t + α∗δθ−thHs∗t + γnt + δn∗t , (9)

where

T :=
[

01×L

IL−1 0L−1×1,

]
(10)

denotes an L×L state–transition matrix, (here, IL represents
an L×L identity matrix and 0I×J is an I×J all zero matrix)
and ut = [st 0 · · · 0]T is the state–perturbation, where
the new symbol st is uniform random variables, i.e., st ∼
U(A) and it is independent of previous and future symbols.
For convenience, we define nt = θtvt and it is clear that

the rotated version of vt is still circular Gaussian, i.e., nt ∼
Nc(0, σ2).

At any time instant t, the unknowns of the prob-
lem are st,h and analog imperfection parameters B :=
{εtx, φtx, εrx, φrx, ω}, and our main objective is to detect
the transmitted sequence s0:t sequentially based on the
MAP criterion from given observation r0:t (here x0:t :=
{x0, x1, · · · xt}), i.e.,

sMAP
0:t = arg max

s0:t
{p[s0:t|r0:t]}. (11)

One hasty solution is to approximate the joint posterior
p[s0:t,B,h|r0:t] via the PF. However, to jointly propagate
particles for s0:t, h and B based on the given state–space
model is computationally intensive. In the following sec-
tions, we show an idea how to apply the computationally
effective MPF to the problem by using the auxiliary variable
resampling.

3. BLIND MPFD FOR KNOWN ANALOG
IMPERFECTIONS

Firstly, we consider the case where B is a priori known to
the receiver and approximate the posterior p[s0:t,h|r0:t,B]
via the MPF. From the Bayesian formulation, we have the
following recursive computation of the posterior,

p[s0:t|r0:t,B] ∝ p[rt|s0:t, r0:t−1,B] · p[s0:t−1|r0:t−1,B]. (12)

This provide the sequential computation of p[s0:t|r0:t,B], if
we can calculate the likelihood p[rt|s0:t, r0:t−1,B]. Recall-
ing that the channel h is unknown to the receiver, thus the
likelihood can be written as

p[rt|s0:t, r0:t−1,B]

=

∫

CL

p[rt|h, st,B] · p[h|s0:t−1, r0:t−1,B]dh. (13)

It is well known that the above integration have a closed-
form expression when the state-space model is linear and
Gaussian. For given st and B, the observation equation (9) is
not a linear but a widely linear system [14] of h. Therefore,
we can modify (9) to a normal linear system by stacking
signals and their complex conjugate, i.e.,

rt =

(([
αγθt βγθt

α∗δθ−t β∗δθ−t

]
⊗ IL

)[
st

s∗t

])T [
h
h∗

]
+ [γ δ]

[
nt

n∗t

]

= ((Λt ⊗ IL) s̄t)
T h̄ + zt, (14)

where ⊗ denotes the Kronecker product, and

s̄t :=
[
st

s∗t

]
, h̄ :=

[
h
h∗

]
, zt := [γ δ]

[
nt

n∗t

]
,

Λt :=

[
αγθt βγθt

α∗δθ−t β∗δθ−t

]
. (15)

Clearly, for given st and B, (14) is a linear system of
h̄. On the other hand, since nt ∼ Nc(0, σ2), the noise zt is
not a proper but an improper complex Gaussian noise [15],
therefore, by using z̄t = [zt z∗t ]T, we have

p[zt] = p[z̄t]

= Nc

([
0
0

]
,

[
(γγ∗ + δδ∗)σ2 2γδσ2

2γ∗δ∗σ2 (γγ∗ + δδ∗)σ2

])

:= Nc

(
[0 0]T,Φ

)
. (16)



Consequently, p[rt|h, st,B] also becomes an improper com-
plex Gaussian and, by using r̄t = [rt r∗t ]T, it can be written
as

p[rt|h, st,B] = p[r̄t|h, st,B]

= Nc

([
((Λt ⊗ IL) s̄t)

T

((Λt ⊗ IL) s̄t)
H D

]
h̄, Φ

)
, (17)

where

D :=
[
0L×L IL

IL 0L×L

]
. (18)

Meanwhile, the posterior of the channel p[h|s0:t, r0:t,B]
is also proportional to the integrand in (13)

p[h|s0:t, r0:t,B] ∝ p[rt|h, st,B] · p[h|s0:t−1, r0:t−1,B]. (19)

Thus, if we assume that the extended channel vector h̄ is a
priori distributed according to a circular complex Gaussian
h̄ ∼ Nc(h̄−1, R̄−1), then p[h|s0:t, r0:t,B] is proportional to a
product of Gaussian densities and it is also Gaussian. Let h̄t

and R̄t denote the posterior mean and covariance of h̄ given
s0:t, r0:t, and B. The integrand of (13) can be written as

p[rt|h, st,B] · p[h|s0:t−1, r0:t−1,B]

= π−1−L|Φ|− 1
2 |R̄t−1|−

1
2 exp{−1

2
[(h̄− h̄t)

HR̄−1
t (h̄− h̄t)

+ r̄H
t Φ−1r̄t + h̄HR̄−1

t−1h̄

− (ΓH
t Φ−1r̄t + R−1

t−1h̄t−1)
HR̄t(Γ

H
t Φ−1r̄t + R−1

t−1h̄t−1)]}
(20)

where

Γt =

[
((Λt ⊗ IL) s̄t)

T

((Λt ⊗ IL) s̄t)
H D

]
, (21)

| · | denotes the determinant of a matrix, and

R̄−1
t = ΓH

t Φ−1Γt + R̄−1
t−1, (22)

h̄t = R̄t(Γ
H
t Φ−1r̄t + R−1

t−1h̄t−1). (23)

Consequently, the integrate (13) can be analytically found
as

p[rt|s0:t, r0:t−1,B]

= π−1|Φ|− 1
2 ||R̄t|

1
2 |R̄t−1|−

1
2 exp{−1

2
[r̄H

t Φ−1r̄t + h̄HR̄−1
t−1h̄

− (ΓH
t Φ−1r̄t + R−1

t−1h̄t−1)
HR̄t(Γ

H
t Φ−1r̄t + R−1

t−1h̄t−1)]}.
(24)

This makes it possible to compute the posterior p[s0:t|r0:t,B]
sequentially according to (12) without concerning the chan-
nel h. Such mariginalization is also known in the context of
the prediction and update steps of the Mixture Kalman fil-
ters [6]. Using the sequential importance sampling (SIS) [2]
and based on the marginalization, we have the blind MPFD
algorithm as shown in Table 1 where the superscript ∗(i) de-
notes the state trajectories of the i-th particle and M is the
number of particles. On the other hand. the importance

function and weights are given by q[·|·] and w
(i)
t . The choice

of the importance function is essential because it determines
the efficiency as well as the complexity of the PF. Two major
examples are prior and posterior importance functions. The
posterior importance function is known as the optimal func-
tion which minimize the variance of the importance weights.

Table. 1 Blind MPFD
for i = 1, · · · , M do

Initialize R̄
(i)
−1 = R̄−1 and h̄

(i)
−1 = h̄−1

end for
for t = 0, · · · , T do

for i = 1, · · · , M do

–Sample s
(i)
t from the set A with q[st|s(i)

0:t−1, r0:t]

–Update R̄
(i)
t and h̄

(i)
t according to (22) and (23)

–Calculate the weights by w̃
(i)
t = w

(i)
t−1

p[rt|s(i)
0:t,r0:t−1]

q[s
(i)
t
|s(i)

0:t−1,r0:t]

end for
end for
for i = 1, · · · , M do

–Normalize the weights by w
(i)
t =

w̃
(i)
t∑M

j=1
w̃

(j)
t

end for
return ŝ

(MAP )
0:T = s

(imax)
0:T where imax = arg maxi w

(i)
T

However it is often analytically intractable. Thus one would
usually resort to using the prior importance function with-
out exploiting informations from the observations, and it is
often ineffective and leads to poor performance.

In our case, it is possible to employ the optimal one, that
is given by,

q[st|s(i)
0:t−1, r0:t,B] =

p[rt|st, s
(i)
0:t−1, r0:t,B]∑N

n=1
p[rt|st = an, s

(i)
0:t−1, r0:t,B]

.

(25)

Clearly, we can derive (25) by using (24). The absence of
sampling h and utilize the optimal importance function make
the MPF quite effective.

4. BLIND MPFD WITH AUXILIARY
VARIABLE RESAMPLING

Next, we consider the PF solution for the system with the un-
known analog imperfections. In this case, due to the presence
of unknown B, the system (9) becomes non-linear and the
posterior importance function is intractable. As mentioned
above, the PF has capability to cope with such a non-linear
problem, and we can somehow design the PF detector using
the prior importance function. However the resulting PF
detector sacrifices the efficiency of the MPFD and it is less
attractive. Therefore, we propose the efficient MPF solution
for the problem by using the auxiliary variable resampling
technique.

We begin with considering two step sampling of

{s(i)
t ,B(i)

t } based on the following decomposition,

p[s0:t,B|r0:t] = p[B|r0:t]p[s0:t|r0:t,B]., (26)

Clearly, the second component in right-hand side of (26) is
the same as the distribution of our interest in the previ-
ous section. Hence, if the detector can firstly draw a set

of samples B(i)
t = {ε(i)tx t, φ

(i)
tx t, ε

(i)
rx t, φ

(i)
rx t, ω

(i)
t } distributed

as p[B|r0:t] at each time instant, we can propagate samples

{s(i)
t } distributed as p[s0:t|B, r0:t] by using the MPF in Table

1.
Now, our interest is how to draw the samples {B(i)

t } from

p[B(i)
t |r0:t]. For this purpose, we employ the auxiliary vari-

able resampling technique which has been proposed by Pitt
and Shephard [11]. Basically, it has been proposed to cope
with the essential weakness of PF, i.e., performance degra-
dation due to the existence of outliers. Here, we use the



method in a slightly different purpose, i.e., to propagate the

approximate samples {B(i)
t } distributed as p[B(i)

t |r0:t] by us-
ing particles of previous time instant.

Here we try to perform the sampling in a higher di-
mension p[B, k|r0:t] instead of p[B|r0:t], where integer k =
1, · · · , M is so-called auxiliary variable and refers to the in-
dex of the particles at time t−1. By applying Bayesian rule,
a proportionality can be derived as

p[B, k|r0:t] ∝ p[rt|B]p[B, k|r0:t−1]

= p[rt|B]p[B|k, r0:t−1]p[k|r0:t−1]

= p[rt|B]p[B|B(k)
t−1]w

(k)
t−1. (27)

If we can draw samples from this joint density and then dis-
card the index k, then we can produce samples from the
desired density p[B|r0:t]. In practice, the optimal impor-

tance function to draw {B(i)
t , k(i)} is intractable, so we use

the importance sampling density defined to satisfy the pro-
portionality,

qaux[B, k|r0:t] ∝ p[rt|B̂(k)
t ]p[B|B(k)

t−1]w
(k)
t−1, (28)

where B̂(i)
t = {ε̂(i)tx t, φ̂

(i)
tx t, ε̂

(i)
rx t, φ̂

(i)
rx t, ω̂

(i)
t } are some charac-

terization of B for given B(k)
t−1, i.e., the averages, modes or

medians of p[B|B(k)
t−1]. To avoid confusion, we denote the im-

portance function as auxiliary importance function qaux[·|·].
By writing,

qaux[B, k|r0:t] = q1[B|k, r0:t]q2[k|r0:t], (29)

and defining

q1[B|k, r0:t] := p[B|B(k)
t−1], (30)

it follows that

q2[k|r0:t] ∝ p[rt|B̂(k)
t ]w

(k)
t−1. (31)

This means that we can sample from qaux[B, k|r0:t] by firstly

simulating the index k with probability p[rt|B̂(k)
t ]w

(k)
t−1, and

then sampling from the transition density p[B|B(k)
t−1] for given

k.
Consequently, combining the MPFD in Table 1 and the

auxiliary variable resampling, the MPFD successfully ap-
plied to the system with unknown analog imperfections. In-
terestingly, in [9](see also [16]), the authors have proposed
a similar suboptimal importance function, called hybrid im-
portance function, through the different approach and pro-
posed the blind particle filtering detector over selective fad-
ing channels with unknown channel order.

From (25) and (28), a set of samples {B(i)
t , s

(i)
t } approx-

imate the total importance distribution:

qtot[st,B|s(k)
0:t−1,B(k)

t−1, r0:t]

= qaux[B, k|r0:t]q[st|s(k)
0:t−1,B, r0:t]

∝ p[rt|B̂(k)
t ]p[B|B(k)

t−1]w
(k)
t−1p[rt|st, s

(k)
0:t−1,B, r0:t−1]. (32)

Corresponding to the total importance function, the
weights update procedure to approximate the posterior

p[st,B|s(k)
0:t−1,B(k)

t−1, r0:t] is obtained as

w
(i)
t ∝ w

(k(i))
t−1

p[rt|s(i)
t ,B(i)

t , r0:t−1]p[s
(i)
t ,B(i)

t |s(k(i))
0:t−1 ,B(k(i))

t−1 ]

qtot[s
(i)
t ,B(i)

t |s(k(i))
0:t−1 ,B(k(i))

t−1 , r0:t]

=

∑N

n=1
p[rt|st = an, s

(k(i))
0:t−1 ,B(i)

t , r0:t−1]∑N

n=1
p[rt|st = an, s

(k(i))
0:t−1 , B̂(k(i))

t , r0:t−1]
, (33)

where k(i) denotes the auxiliary variable at the i–th particle.
We summarize the algorithm of the proposed blind MPFD

in Table 2. Now, the rest of the problem is the choice of B̂(i)
t

Table. 2 Blind MPFD with auxiliary variable resampling

for i = 1, · · · , M do

Initialize R̄
(i)
−1 = R̄−1 and h̄

(i)
−1 = h̄−1

Draw initial samples B(i)
−1 ∼ p0[B]

end for

(Step 1. Auxiliary variable resampling)
for t = 0, · · · , T do

for i = 1, · · · , M do

–Compute B̂(i)
t

end for
for i = 1, · · · , M do

–Sample k(i) from the set {1, · · · , M} with probability

proportional to p[rt|B̂(k)
t , s

(k)
0:t−1, r0:t−1]w

(k)
t−1

–Sample B(i)
t from p[B|B(k(i))

t−1 ]
end for

(Step 2. Sequential importance sampling)
for i = 1, · · · , M do

–Sample s
(i)
t from the set A with q[st|s(k(i))

0:t−1 ,B(i)
t , r0:t]

–Update R̄
(i)
t and h̄

(i)
t according to (22) and (23)

–Calculate the weight w̃
(i)
t with (33)

end for
for i = 1, · · · , M do

–Normalize the weights by w
(i)
t =

w̃
(i)
t∑M

j=1
w̃

(j)
t

end for

–let s
(i)
0:t = {s(i)

t , s
(k(i))
t−1 , · · · , s

(k(i))
0 } for each i

end for
return ŝ

(MAP )
0:T = s

(imax)
0:T where imax = arg maxi w

(i)
T

and p[B|B(i)
t−1]. In fact, since parameters εtx, φtx, εrx, φrx,

and ω are all static, the simplest choice will be B̂(i)
t = B(k(i))

t

and just set B(i)
t = B(k(i))

t−1 without sampling. However, the
inability to rejuvenate B with an arrival of new observations
makes the accuracy of the final estimate greatly sensitive to
the initial samples. To overcome this drawback, in [16],
authors applied smoothing kernel [3]. For example, for the
CFO parameter ω,

ω̂
(i)
t = ηω

(i)
t−1 + (1− η)ω̄t−1, (34)

ω
(i)
t ∼ N (ω̂

(k(i))
t , ξ2ρt−1), (35)

where ω̄t−1 is weighted average of {ω(i)
t−1},i.e., ω̄t−1 =∑M

i=1
w

(i)
t−1ω

(i)
t−1, ρt−1 is weighted sample covariance and

N (·) denotes real Gaussian pdf. The same procedure can be
used for the other imperfection parameters. It is suggested

in [3] that η =
√

1− ξ2, ξ2 = 1−((3ν−1)/2ν), and ν is a dis-
count factor typically from the set [0.95, 0.99]. What is more,
in the system described in (9), since the IQ imbalance and
the CFO is somehow limited in a certain region by the man-
ufacturer, it would be more effective to use truncated real

Gaussian T N (ω̂
(k(i))
t , ξ2vt−1, ωl, ωu) in which samples con-

strained in the region [ωl, ωu], instead of N (ω̂
(k(i))
t , ξ2ρt−1).



5. SIMULATION RESULTS

Here, we evaluate the bit error rate (BER) performance of
the proposed MPFD via computer simulations. In our exper-
iment, we simulate a scenario of a time-invariant frequency
selective Rayleigh fading channel of length L = 3. The cir-
cular Gaussian prior is assumed for the channel coefficients,
i.e., h ∼ Nc(h−1,R−1) where

h−1 =

[
1
0
0

]
, R−1 =

[
0.2 0 0
0 0.1 0
0 0 0.05

]
. (36)

We employ differentially coded QPSK for modulation and
demodulation schemes and transmit T = 200 symbols over
the channel. The received signal is distorted by Tx IQ im-
balance and the CFO, where the priors for these analog im-
perfection parameters are

εtx, εrx ∼ T N (0, 0.01, 0, 0.1), (37)

φtx, φrx ∼ T N (0, 0.01,−0.05π, 0.05π), (38)

ω ∼ T N (0, 0.01,−0.01π, 0.01π), (39)

and the resulting IRR is about 30dB. At the receiver, we test
the conventional MPFD [8], which is basically designed for
the systems without analog imparfections, and the proposed
MPFD. For comparison, we also evaluate the performance of
the conventional MPFD in the case where the analog front-
end of the transceivers are ideal, i.e., εtx = εrx = φtx =
φrx = ω = 0. All the priors are assumed to be known to the
receiver and both the detectors employ M = 300 particles.
In the proposed MPFD, we employ the smoothing kernel in
the auxiliary variable resampling step and, for fair compar-
ison, the resampling procedure is conducted each time step
in the conventional MPFD.

Fig. 1 shows the BER performances of the conventional
and proposed MPFD versus the transmitted signal power
to the noise power ratio (SNR) . All the results are aver-
age of 500 realizations. From the figure, the analog imper-
fections, which inherent in any analog front-end, seriously
degrade the performance of the conventional MPF detec-
tor. On the other hand, the proposed MPFD can efficiently
compensate the imperfections and improve the performance
significantly. It should be mentioned that, in the low SNR
region, the propose MPFD shows the superior performance
compared with the conventional MPFD with the ideal ana-
log front-end. This is because of the essential performance
improvement by the use of the auxiliary variable resampling
instead of sequential importance resampling [2] used in the
conventional MPFD.

6. CONCLUSIONS

The blind particle filtering detector in the presence of the
IQ imbalance and the CFO has been proposed. By using
the auxiliary variable resampling, the MPF can efficiently
applied to such non-linear and non-Gaussian problem. Also,
we show the effectiveness of the proposed MPFD via com-
puter simulations.

REFERENCES

[1] N. Gordon, et al., ”Novel approach to nonlinear/non-
Gaussian Bayesian state estimation ,” Radar and Signal
Processing, IEE Proceedings F , vol.140, no.2, pp.107–
113, 1993.

[2] A.Doucet, et al., ”On sequential Monte-Carlo sampling
methods for Bayesian filtering,” Statist. Comput., vol.
10, no. 3, pp197–208, 2000.

0 2 4 6 8 10 12
10−3

10−2

10−1

100

SNR[dB]

B
E

R

Conventional MPFD
Proposed MPFD
Conventional MPFD (Ideal analog front−end)

Figure 1: The BER performance versus SNR of the conven-
tional and proposed MPFDs

[3] A. Doucet, et al., Eds. ,Sequential Monte Carlo Method
in Practice, New York: Springer-Verlag, 2000.

[4] G. Casella and C. Robert, ”Rao-Blackwellisation of Sam-
pling Schemes,” Biometrika, vol. 83, no. 1 , pp.81–94,
1996.

[5] F. Le Gland, et al., ”An analysis of regularized inter-
acting particle methods for nonlinear filtering.” In J.
Rojcek, M. Valeckova, M. Karny, and K. Warwick, edi-
tors, Preprints of the 3rd IEEE European Workshop on
Computer–Intensive Methods in Control and Data Pro-
cessing, 1998.

[6] R. Chen and J. Liu, ”Mixture Kalman filters,” J. R.
Statist. Soc. B, vol. 62, pp. 493-508, 2000.

[7] A. Doucet, et al., ”Particle filters for state estimation of
jump Markov linear systems ,” IEEE trans. Signal Pro-
cessing, vol. 49, no. 3, pp613–624, 2001.

[8] J. Miguez, and P. Djuric, ”Blind equalization by se-
quential importance sampling,” in Proc. of IEEE ISCAS,
Phoenix, AZ, pp. 845-848, 2002.

[9] J. Miguez and P. Djuric, ”Blind equalization of
frequency-selective channels by sequential importance
sampling,” IEEE Trans.on Signal Processing, vol. 52, no.
10, pp. 2738-2748, 2004.

[10] B. Razavi, RF Microelectronics, Prentice Hall, 1998.

[11] M. Pitt and N. Shephard, ”Filtering via simulation:
Auxiliary particle filter,” J. Amer. Statist. Assoc., vol.
94, pp. 590–599, 1999.

[12] M. Valkama, et al., ”Advanced methods for I/Q imbal-
ance compensation in communication receivers,” IEEE
Trans. Signal Processing, vol. 44, pp. 3017-3030, Dec.
1996.

[13] J. Tubbax, et al., ”Joint compensation of IQ imbalance
and frequency offset in OFDM systems,” in Proc. of IEEE
GLOBECOM, vol. 4, pp. 2365–2369, 2003.

[14] B. Picinbono and P. Chevalier, ”Widely linear estima-
tion with complex data,” IEEE Trans. Signal Processing,
vol. 43, pp. 2030-2033, 1995.

[15] B. Picinbono, ”Second-order complex random vectors
and normal distribution,” IEEE Trans. Signal Process-
ing, vol. 44, pp. 2637–2640, 1996.

[16] Y. Huang and P. Djuric, ”A hybrid importance function
for particle filtering,” IEEE Signal Processing Letters,
vol. 11, pp. 404-406, 2003.


