初学者のための無線通信信号処理入門

林 和則

大阪市立大学大学院工学研究科 kazunori@eng.osaka-cu.ac.jp

電子情報通信学会無線通信システム(RCS)研究会主催 5Gの根底にある無線信号処理に関する基礎ワークショップ

目的

無線通信や信号処理の初学者(主にB4やM1の学生の方)に 無線通信のための信号処理技術の基礎を効率的に理解してい ただくこと

- -他であまり説明されていない(躓きやすい)重要な基礎 事項を説明
- -基本的かつ汎用的なモデルを一つ設定
- -そのモデルに対する基本的な信号処理手法を説明
- -実際の問題への応用例
- -文献紹介

表記

実数の集合、複素数の集合: ℝ, ℂ

列ベクトル: \mathbf{a} (ボールド体の小文字)

行列: **A**(ボールド体の大文字)

複素共役,転置,共役転置: $(\cdot)^*$, $(\cdot)^T$, $(\cdot)^H$

対角行列: $\operatorname{diag}[a_1 \cdots a_N]$ (対角成分: a_1, \cdots, a_N)

トレース: $\operatorname{tr}\{\cdot\}$

行列式: det{·}

単位行列,零行列: \mathbf{I} , $\mathbf{0}$

期待值: $E[\cdot]$

期待値: $E'[\cdot]$ ℓ_p -ノルム($p \ge 1$): $||\mathbf{a}||_p = \left(\sum_{i=1}^n |a_i|^p\right)_{0}^{\frac{1}{p}}$ 0-ソルム:非零要素数

虚数単位:j

実部, 虚部: $\Re\{\cdot\}$, $\Im\{\cdot\}$

信号処理の基本的な考え方(1/4)

離散 (時間) システム:

$$y(k) = \mathcal{L}x(k)$$

$$x(k)$$
 → 離散システム \mathcal{L} → $y(k)$

線形性:

$$y_1(k) = \mathcal{L}x_1(k)$$
 とする. \mathcal{L} が線形性をもつとき $y_2(k) = \mathcal{L}x_2(k)$

$$\mathcal{L}[ax_1(k) + bx_2(k)] = a\mathcal{L}x_1(k) + b\mathcal{L}x_2(k) = ay_1(k) + by_2(k)$$

 a, b : 任意の係数

 \rightarrow 和と $oldsymbol{\mathcal{L}}$ の順序を交換できる

信号処理の基本的な考え方(2/4)

任意の信号 x(k) は単位インパルス $\delta(k)$ を用いて表現される $x(k) = \sum_{n=-\infty}^{\infty} x(n)\delta(k-n)$

よって、線形離散システム と の出力は

$$y(k) = \mathcal{L}\left[\sum_{n=-\infty}^{\infty} x(n)\delta(k-n)\right] = \sum_{n=-\infty}^{\infty} x(n)\underline{\mathcal{L}}\delta(k-n)$$
 インパルス応答

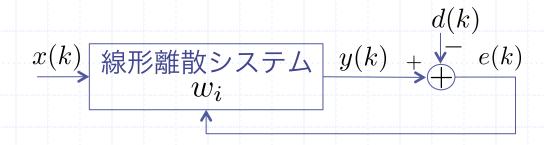
時不変性:

 $w(k) = \mathcal{L}\delta(k)$ としたとき, \mathcal{L} が時不変なら $w(k-n) = \mathcal{L}\delta(k-n)$ $y(k) = \sum_{n=-\infty}^{\infty} x(n)w(k-n)$:畳み込み演算

畳み込み演算は、線形性と時不変性から自然に出てくる

信号処理の基本的な考え方(3/4)

線形離散システムの出力信号と希望する信号との誤差が「何らかの意味」で小さくなるように線形システムの重み(インパルス応答)を制御



入力信号: $\mathbf{x}(k) = [x(k)\cdots x(k-N+1)]^{\mathrm{T}} \in \mathbb{C}^N$

重み係数: $\mathbf{w} = [w_0 \cdots w_{N-1}]^T \in \mathbb{C}^N$

出力信号: $y(k) = \sum_{i=0}^{N-1} w_i^* x(k-i) = \mathbf{w}^H \mathbf{x}(k)$

所望信号: d(k)

誤差信号: e(k) = y(k) - d(k)

信号処理の基本的な考え方(4/4)

誤差信号の大きさ(コスト関数)の代表例:

$$J(\mathbf{w}) = E[|e(k)|^{2}]$$

$$= E[|\mathbf{w}^{H}\mathbf{x}(k) - d(k)|^{2}]$$

$$= \mathbf{w}^{H} E[\mathbf{x}(k)\mathbf{x}(k)^{H}]\mathbf{w} - \mathbf{w}^{H} E[\mathbf{x}(k)d^{*}(k)] - E[d(k)\mathbf{x}(k)^{H}]\mathbf{w} + E[|d(k)|^{2}]$$
相関行列

- ー ー ー ー ー ー ー ー 相関行列 $E[\mathbf{x}(k)\mathbf{x}(k)^{\mathbf{H}}]$ の性質 ー 実数値をとる複素関数 $J(\mathbf{w})$ の複素数ベクトル \mathbf{w} による微分

目次

- ❖ 基礎事項
 - 相関行列とその性質
 - ウィルティンガー微分
- ❖ 種々の信号処理手法
 - 問題設定
 - 各信号処理手法の説明
- ❖ 具体例

目次

- ❖ 基礎事項
 - 相関行列とその性質
 - ウィルティンガー微分
- ❖ 種々の信号処理手法
 - 問題設定
 - 各信号処理手法の説明
- ❖ 具体例

離散確率変数

離散確率変数:X,Y

確率分布: $P(x_i) = \Pr(X = x_i)$

同時確率分布: $P(x_i, y_j) = \Pr(X = x_i, Y = y_j)$

条件付確率分布: $P(y_j|x_i) = \Pr(Y = y_j|X = x_i)$

確率の基本法則:

加法定理: $P(x) = \sum_{y} P(x, y)$ 周辺化

乗法定理: P(x,y) = P(y|x)P(x) = P(x|y)P(y)

ベイズ則:

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} = \frac{P(x|y)P(y)}{\sum_{y} P(x|y)P(y)}$$

(注)通常,確率変数は大文字で,その実現値は小文字で表記するが,本講演ではベクトルと行列を大文字,小文字で使い分けるため,スライドp12以降この限りでない

連続確率変数

連続確率変数:任意の $c\in\mathbb{R}$ に対して $\Pr(X=c)=0$ となる確率変数 X

確率密度関数: p(x) $\Pr(a \le X \le b) = \int_a^b p(x) dx$

確率密度関数の性質: $p(x) \ge 0$, $\int_{-\infty}^{\infty} p(x)dx = 1$

確率の基本法則:

加法定理: $p(x) = \int p(x,y)dy$ 周辺化

乗法定理: p(x,y) = p(y|x)p(x)

ベイズ則:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\int p(x|y)p(y)dy}$$

(離散時間)確率過程

番号がつけられた確率変数の集合: $\{x(n), n = \ldots, -2, -1, 0, 1, 2, \ldots\}$

平均值: $m_{\mathbf{x}}(n) = E[x(n)]$

$$E[x(n)] = \sum x(n)P(x(n))$$
 (離散確率変数の場合)

$$E[x(n)] = \int x(n)p(x(n))dx(n)$$
 (連続確率変数の場合)

自己相関関数: $r_{\mathbf{x}}(n,k) = E[x(n)x^*(n-k)]$

$$E[x(n)x^*(n-k)] = \int \int x(n)x^*(n-k)p(x(n),x(n-k))dx(n)dx(n-k)$$
(連続確率変数の場合)

自己共分散関数: $c_x(n,k) = E[(x(n) - m_x(n))(x(n-k) - m_x(n-k))^*]$

分散: $\sigma_{\mathbf{x}}^{2}(n) = c_{\mathbf{x}}(n,0) = E[(x(n) - m_{\mathbf{x}}(n))(x(n) - m_{\mathbf{x}}(n))^{*}]$

分散の有界な確率過程を2次過程という

定常確率過程

狭義定常過程: $\{x(n), n = \ldots, -2, -1, 0, 1, 2, \ldots\}$ の任意の有限次元同時分布が時間原点の移動に対して不変

q 次元同時分布:

$$p(x(n_1), x(n_2), \cdots, x(n_q)) = p(x(n_1 + l), x(n_2 + l), \cdots, x(n_q + l))$$
(l : 任意)

 $\{x(n), n = \ldots, -2, -1, 0, 1, 2, \ldots\}$ が狭義定常過程のとき. . .

平均: $m_{\mathbf{x}}(n) = m_{\mathbf{x}}$

相関関数: $r_{\mathbf{x}}(n,k) = r_{\mathbf{x}}(k)$

広義定常過程:平均が時刻によらず一定で、かつ自己相関関数が時間差 のみの関数になる2次過程

周期定常確率過程

非定常過程=定常でない確率過程

非定常過程にも平均や相関関数がnに対してでたらめに変化するものだけでなく規則的に変化するものもある

(周期 Tの) 広義周期定常過程:

任意の整数lに対して次が成立するとき

平均: $m_{\mathbf{x}}(n) = m_{\mathbf{x}}(n+lT)$

相関関数: $r_x(n,k) = r_x(n+lT,k+lT)$

2次の統計量から位相情報が得られるという利点

広義定常過程の自己相関行列

離散時間広義定常過程 x(n) の観測ベクトル:

$$\mathbf{x}(n) = [x(n) \ x(n-1) \ \cdots \ x(n-N+1)]^{\mathrm{T}} \in \mathbb{C}^N$$

自己相関行列:

$$\begin{aligned} \mathbf{R}_{\mathbf{x}} &= E[\mathbf{x}(n)\mathbf{x}^{\mathrm{H}}(n)] \\ &= \begin{bmatrix} E[x(n)x^{*}(n)] & E[x(n)x^{*}(n-1)] & \dots & E[x(n)x^{*}(n-N+1)] \\ E[x(n-1)x^{*}(n)] & E[x(n-1)x^{*}(n-1)] & \dots & E[x(n-1)x^{*}(n-N+1)] \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ E[x(n-N+1)x^{*}(n)] & E[x(n-N+1)x^{*}(n-1)] & \dots & E[x(n-N+1)x^{*}(n-N+1)] \end{bmatrix} \\ &= \begin{bmatrix} r_{\mathbf{x}}(0) & r_{\mathbf{x}}(1) & \dots & r_{\mathbf{x}}(N-1) \\ r_{\mathbf{x}}(-1) & r_{\mathbf{x}}(0) & \dots & r_{\mathbf{x}}(N-2) \\ \vdots & \vdots & \ddots & \vdots \\ r_{\mathbf{x}}(-N+1) & r_{\mathbf{x}}(-N+2) & \dots & r_{\mathbf{x}}(0) \end{bmatrix} \end{aligned}$$

テプリッツ行列と呼ばれる構造(対角線に平行な線上の成分が等しい) 主対角成分成分は全て実数

離散時間広義定常過程の自己相関行列はエルミート行列

$$\mathbf{R}_{\mathbf{x}}^{\mathrm{H}} = \left(E[\mathbf{x}(n)\mathbf{x}^{\mathrm{H}}(n)]\right)^{\mathrm{H}}$$
 共役転置 $(\cdot)^{\mathrm{H}}$ と集合平均 $E[\cdot]$ はいずれも線形操作なので可換 $= E[\mathbf{x}(n)\mathbf{x}^{\mathrm{H}}(n)]$ (**AB**) $= \mathbf{B}^{\mathrm{H}}\mathbf{A}^{\mathrm{H}}$

$$\mathbf{X} = \mathbf{X}_{\mathrm{r}} + j\mathbf{X}_{\mathrm{i}}, \quad \mathbf{Y} = \mathbf{Y}_{\mathrm{r}} + j\mathbf{Y}_{\mathrm{i}}, \quad \mathbf{X}_{\mathrm{r}}, \mathbf{X}_{\mathrm{i}}, \mathbf{Y}_{\mathrm{r}}, \mathbf{Y}_{\mathrm{i}} \in \mathbb{R}^{M \times N}$$
 とすると $\mathbf{X}^{\mathrm{H}} = \mathbf{X}_{\mathrm{r}}^{\mathrm{T}} - j\mathbf{X}_{\mathrm{i}}^{\mathrm{T}}, \quad \mathbf{Y}^{\mathrm{H}} = \mathbf{Y}_{\mathrm{r}}^{\mathrm{T}} - j\mathbf{Y}_{\mathrm{i}}^{\mathrm{T}}$ となる. 一方, $a, b \in \mathbb{R}$ として $(a\mathbf{X} + b\mathbf{Y})^{\mathrm{H}} = \{(a\mathbf{X}_{\mathrm{r}} + b\mathbf{Y}_{\mathrm{r}}) + j(a\mathbf{X}_{\mathrm{i}} + b\mathbf{Y}_{\mathrm{i}})\}^{\mathrm{H}}$ $= (a\mathbf{X}_{\mathrm{r}} + b\mathbf{Y}_{\mathrm{r}})^{\mathrm{T}} - j(a\mathbf{X}_{\mathrm{i}} + b\mathbf{Y}_{\mathrm{i}})^{\mathrm{T}}$ $= a\mathbf{X}^{\mathrm{H}} + b\mathbf{Y}^{\mathrm{H}}$

より、線形性をもつ

離散時間広義定常過程の自己相関行列は非負定値

 $\mathbf{u} \in \mathbb{C}^N$ を任意の確定的な非零ベクトルとすると $E[|\mathbf{u}^{\mathrm{H}}\mathbf{x}(n)|^2] = E[(\mathbf{u}^{\mathrm{H}}\mathbf{x}(n))(\mathbf{u}^{\mathrm{H}}\mathbf{x}(n))^{\mathrm{H}}]$ $= E[\mathbf{u}^{\mathrm{H}}\mathbf{x}(n)\mathbf{x}^{\mathrm{H}}(n)\mathbf{u}]$ $= \mathbf{u}^{\mathrm{H}}E[\mathbf{x}(n)\mathbf{x}^{\mathrm{H}}(n)]\mathbf{u}$ $= \mathbf{u}^{\mathrm{H}}\mathbf{R}_{\mathbf{x}}\mathbf{u} \geq 0$ 実数、非負

A を任意のエルミート行列とすると

$$(\mathbf{u}^{H}\mathbf{A}\mathbf{u})^{H} = \mathbf{u}^{H}\mathbf{A}^{H}\mathbf{u}$$

= $\mathbf{u}^{H}\mathbf{A}\mathbf{u}$

 $\mathbf{u}^{H}\mathbf{R}_{\mathbf{x}}\mathbf{u}$ をエルミート形式(実数の場合は2次形式)といい,任意の非零ベクトル $\mathbf{u}\in\mathbb{C}^{N}$ についてエルミート形式が正となる行列を正定値,負となる行列を負定値,非負となる行列を非負定値(半正定値)という.

離散時間広義定常過程の自己相関行列の固有値は全て非負の実数

自己相関行列 $\mathbf{R}_{\mathbf{x}}$ の固有値を $\lambda_1, \ldots, \lambda_N$ とし、固有値 λ_i に対応する固有ベクトルを $\mathbf{q}_i = [q_{i,1} \cdots q_{i,N}]^{\mathrm{T}} (\neq \mathbf{0})$ とする

$$\mathbf{R}_{\mathbf{x}}\mathbf{q}_{i}=\lambda_{i}\mathbf{q}_{i}$$

 $oldsymbol{\downarrow}$ 両辺左から $\mathbf{q}_i^{\mathrm{H}}$ を乗算

$$\mathbf{q}_i^{\mathrm{H}}\mathbf{R}_{\mathrm{x}}\mathbf{q}_i = \lambda_i\mathbf{q}_i^{\mathrm{H}}\mathbf{q}_i$$

$$\mathbf{q}_i^{\mathrm{H}}\mathbf{q}_i = \sum_{i=1}^N |q_{i,j}|^2 は正の実数$$

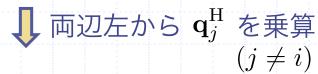
$$\lambda_i = rac{\mathbf{q}_i^{\mathrm{H}} \mathbf{R}_{\mathrm{x}} \mathbf{q}_i}{\mathbf{q}_i^{\mathrm{H}} \mathbf{q}_i} \geq 0$$
 性質2より

この形の「比」をレイリー商という

離散時間広義定常過程の自己相関行列の異なる固有値に対応する 固有ベクトルは直交する

自己相関行列 $\mathbf{R}_{\mathbf{x}}$ の固有値 $\lambda_1, \ldots, \lambda_N$ が全て異なるとし、 固有値 λ_i に対応する固有ベクトルを \mathbf{q}_i とする

$$\mathbf{R}_{\mathbf{x}}\mathbf{q}_{i}=\lambda_{i}\mathbf{q}_{i}$$



$$\mathbf{q}_j^{\mathrm{H}} \mathbf{R}_{\mathrm{x}} \mathbf{q}_i = \lambda_i \mathbf{q}_j^{\mathrm{H}} \mathbf{q}_i$$

辺々引き算

$$(\lambda_i - \lambda_j) \mathbf{q}_j^{\mathrm{H}} \mathbf{q}_i = 0$$

$$\mathbf{q}_j^{\mathrm{H}}\mathbf{q}_i = 0$$

$$\mathbf{R}_{\mathbf{x}}\mathbf{q}_{j} = \lambda_{j}\mathbf{q}_{j}$$

↓ 両辺エルミート転置

$$\mathbf{q}_j^{\mathrm{H}} \mathbf{R}_{\mathrm{x}} = \lambda_j \mathbf{q}_j^{\mathrm{H}}$$

$$\lambda_i$$
: 実数

 \mathbf{I} 両辺右から \mathbf{q}_i を乗算

$$\mathbf{q}_j^{\mathrm{H}} \mathbf{R}_{\mathrm{x}} \mathbf{q}_i = \lambda_j \mathbf{q}_j^{\mathrm{H}} \mathbf{q}_i$$

正確には、任意のエルミート 行列について成立する性質

離散時間広義定常過程の自己相関行列はユニタリ行列で対角化される

自己相関行列 \mathbf{R}_{x} の固有値を $\lambda_1,\ldots,\lambda_N$ とし、対応する 正規化固有値ベクトルを $\mathbf{q}_1, \dots, \mathbf{q}_N$ とする(つまり, $||\mathbf{q}_i||_2 = 1$)

固有値が全て異なる場合: $\mathbf{R}_{\mathbf{x}}\mathbf{q}_i = \lambda_i\mathbf{q}_i$

列を並べる

$$\mathbf{R}_{\mathrm{x}}\mathbf{Q}=\mathbf{Q}egin{bmatrix} \lambda_1 & & & & \ & \ddots & & \ & & \lambda_N \end{bmatrix} \qquad \mathbf{Q}=egin{bmatrix} \mathbf{q}_1 & \dots & \mathbf{q}_N \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \dots & \mathbf{q}_N \end{bmatrix}$$

$$\mathbf{Q}^{\mathrm{H}}\mathbf{Q} = \mathbf{I}$$
 性質4よりユニタリ行列

$$\mathbf{Q}^{\mathrm{H}}\mathbf{R}_{\mathrm{x}}\mathbf{Q} = egin{bmatrix} \lambda_{1} & & & & \\ & \ddots & & & \\ & & \lambda_{N} \end{bmatrix}$$

固有値が重複する場合:同じ固有値をもつ固有ベクトルの部分空間内 に直交基底をとればよい

相異なる固有値をもつ離散時間広義定常過程の自己相関行列 \mathbf{R}_{x} の最大固有値 λ_{max} は、以下の最適化問題によって得られる

$$\lambda_{\max} = \max_{||\mathbf{q}||_2 = 1} \mathbf{q}^H \mathbf{R}_x \mathbf{q}$$

自己相関行列 $\mathbf{R}_{\mathbf{x}}$ の固有値を $\lambda_1 > \lambda_2 > \cdots > \lambda_N$ とし、対応する正規化固有値ベクトルを $\mathbf{q}_1, \dots, \mathbf{q}_N$ とする

 $\mathbf{q}_1, \dots, \mathbf{q}_N$ は正規直交基底となるので、これで最大化ベクトル \mathbf{p} を表すと

$$\mathbf{p} = \sum_{i=1}^{N} \alpha_i \mathbf{q}_i$$

性質5より

$$\mathbf{R}_{ ext{x}} = \mathbf{Q} egin{bmatrix} \lambda_1 & & & \ & \ddots & & \ & & \lambda_N \end{bmatrix} \mathbf{Q}^{ ext{H}} = \sum_{i=1}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^{ ext{H}} & & \ \end{pmatrix}$$

自己相関行列の性質6 (続)

$$\mathbf{p}^{\mathrm{H}}\mathbf{R}_{\mathrm{x}}\mathbf{p} = \mathbf{p}^{\mathrm{H}}\left(\sum_{i=1}^{N}\lambda_{i}\mathbf{q}_{i}\mathbf{q}_{i}^{\mathrm{H}}
ight)\mathbf{p} = \sum_{i=1}^{N}\lambda_{i}\mathbf{p}^{\mathrm{H}}\mathbf{q}_{i}\mathbf{q}_{i}^{\mathrm{H}}\mathbf{p}^{\mathrm{H}}$$

$$\mathbf{p} = \sum_{j=1}^{N} \alpha_j \mathbf{q}_j \implies \mathbf{p}^{\mathrm{H}} \mathbf{q}_i = \sum_{j=1}^{N} \alpha_j^* \mathbf{q}_j^{\mathrm{H}} \mathbf{q}_i = \alpha_i^*, \ \mathbf{q}_i^{\mathrm{H}} \mathbf{p} = \sum_{j=1}^{N} \alpha_j \mathbf{q}_i^{\mathrm{H}} \mathbf{q}_j = \alpha_i$$
正規直交性

$$\mathbf{p}^{\mathrm{H}}\mathbf{R}_{\mathrm{x}}\mathbf{p} = \sum_{i=1}^{N} \lambda_{i}\mathbf{p}^{\mathrm{H}}\mathbf{q}_{i}\mathbf{q}_{i}^{\mathrm{H}}\mathbf{p} = \sum_{i=1}^{N} \lambda_{i}|\alpha_{i}|^{2} \leq \lambda_{1}\sum_{i=1}^{N}|\alpha_{i}|^{2}$$

等号成立は全ての $i(\neq 1)$ について $|\alpha_i|=0$ のとき

$$\prod_{\substack{||\mathbf{p}||_2 = 1}} ||\mathbf{p}||_2 = 1 \, \sharp \, \mathfrak{h} \, |\alpha_1| = 1$$

$$\max_{\substack{||\mathbf{p}||_2 = 1}} \mathbf{p}^H \mathbf{R}_{\mathbf{x}} \mathbf{p} = \lambda_1$$

2番目以降の固有値も同様の手順を繰り返すことで求まる 固有値が縮退している場合も同様の手順で求まる

目次

- ❖ 基礎事項
 - 相関行列とその性質
 - ウィルティンガー微分
- ❖ 種々の信号処理手法
 - ■問題設定
 - 各信号処理手法の説明
- ❖ 具体例

実1変数関数の微分

 $D \subseteq \mathbb{R}$ を関数 $f: D \to \mathbb{R}$ の定義域とする.

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

が任意の $x \in D$ について存在するとき、関数f は微分可能という。

「極限が存在する」 = Δx の0への近づけ方によらず極限の値が一つに定まるという意味

実2変数関数の微分:偏微分

2変数関数 f(x,y) では、変化させる量が2つある \rightarrow 「片方だけ動く場合」と「両方動く場合」について考える

偏微分(片方だけ動く場合):

 $D \subseteq \mathbb{R}^2$ を関数 $f: D \to \mathbb{R}$ の定義域とする.

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x}$$
$$\frac{\partial f(x,y)}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x,y + \Delta y) - f(x,y)}{\Delta y}$$

が $(x,y) \in D$ において存在するとき、これらを偏微分という。

$$f(x + \Delta x, y) = f(x, y) + \frac{\partial f(x, y)}{\partial x} \Delta x + \epsilon_x \Delta x$$
$$f(x, y + \Delta y) = f(x, y) + \frac{\partial f(x, y)}{\partial y} \Delta y + \epsilon_y \Delta y$$

ただし、 $\Delta x \to 0$ のとき $\epsilon_x \to 0$ 、 $\Delta y \to 0$ のとき $\epsilon_y \to 0$

実2変数関数の微分:全微分

全微分(両方動く場合):

x, y をそれぞれ, Δx , Δy 変化させた時の f(x,y)の変動分を考える.

$$f(x + \Delta x, y + \Delta y) = f(x, y) + \Delta f$$

x についての偏微分の式 $f(x+\Delta x,y)=f(x,y)+rac{\partial f(x,y)}{\partial x}\Delta x+\epsilon_x\Delta x$ で y に $y + \Delta y$ を代入して

$$f(x + \Delta x, y + \Delta y)$$

$$= f(x, y + \Delta y) + \frac{\partial f(x, y + \Delta y)}{\partial x} \Delta x + \epsilon_x \Delta x$$

$$= f(x,y) + \frac{\partial f(x,y)}{\partial y} \Delta y + \left\{ \frac{\partial f(x,y)}{\partial x} + \frac{\partial}{\partial y} \left(\frac{\partial f(x,y)}{\partial x} \right) \Delta y + \epsilon_{dy} \Delta y \right\} \Delta x + \epsilon_x \Delta x + \epsilon_y \Delta y$$

$$pprox f(x,y) + rac{\partial f(x,y)}{\partial x} \Delta x + rac{\partial f(x,y)}{\partial y} \Delta y$$
 ($\Delta x \Delta y$ の項を無視)

全微分: $df = \frac{\partial f(x,y)}{\partial x} dx + \frac{\partial f(x,y)}{\partial y} dy$

(△を無限小にもって行く 前提でdに置き換えた)

実2変数関数の微分:実微分可能

関数 f(x,y) は領域 $D \subseteq \mathbb{R}^2$ で連続で、偏微分 $\frac{\partial f(x,y)}{\partial x}$ 、 $\frac{\partial f(x,y)}{\partial y}$ がいたるところで定義されていて、さらに $\frac{\partial f(x,y)}{\partial x}$ または $\frac{\partial f(x,y)}{\partial y}$ は点 $(x,y) \in D$ で連続であるとする。このとき $\Delta f = f(x + \Delta x, y + \Delta y) - f(x,y)$ $= \frac{\partial f(x,y)}{\partial x} \Delta x + \frac{\partial f(x,y)}{\partial y} \Delta y + \epsilon_x \Delta x + \epsilon_y \Delta y$ が成り立つ ただし、 ϵ_x , ϵ_y は Δx , $\Delta y \to 0$ のとき ϵ_x , $\epsilon_y \to 0$ なる量である

が成り立つ。ただし、
$$\epsilon_x, \epsilon_y$$
 は $\Delta x, \Delta y \to 0$ のとき $\epsilon_x, \epsilon_y \to 0$ なる量である
$$f(x + \Delta x, y + \Delta y) - f(x, y) = f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) + f(x, y + \Delta y) - f(x, y)$$
$$= \frac{\partial f(x, y + \Delta y)}{\partial x} \Delta x + \epsilon_x \Delta x + \frac{\partial f(x, y)}{\partial y} \Delta y + \epsilon_y \Delta y$$
$$\frac{\partial f(x, y)}{\partial x} \text{ が } (x, y) \text{ で連続なら, } \Delta y \to 0 \text{ のとき } \epsilon = \frac{\partial f(x, y + \Delta y)}{\partial x} - \frac{\partial f(x, y)}{\partial x} \to 0$$
$$\Delta f = \left\{ \frac{\partial f(x, y)}{\partial x} + \epsilon \right\} \Delta x + \epsilon_x \Delta x + \frac{\partial f(x, y)}{\partial y} \Delta y + \epsilon_y \Delta y$$
$$= \frac{\partial f(x, y)}{\partial x} \Delta x + (\epsilon + \epsilon_x) \Delta x + \frac{\partial f(x, y)}{\partial y} \Delta y + \epsilon_y \Delta y$$

実2変数関数の微分:方向微分

方向微分(両方動く場合):

x, y を変化させる方向によって f(x,y) の変化の度合いは一般に異なる

x, y を変化させる方向 $\mathbf{v} = (v_x, v_y)$ を指定したときの微分を考える

 $(x,y) \rightarrow (x+v_x\Delta t,y+v_y\Delta t)$ とすると全微分の式より

$$df = v_x \frac{\partial f(x,y)}{\partial x} dt + v_y \frac{\partial f(x,y)}{\partial y} dt$$

方向微分: $\frac{df}{dt}\Big|_{\mathbf{v}} = v_x \frac{\partial f(x,y)}{\partial x} + v_y \frac{\partial f(x,y)}{\partial y}$

一般に、方向 v に依存する

複素微分可能関数 (正則関数)

 $D\subseteq\mathbb{C}$ を関数 $f:D\to\mathbb{C}$ の定義域とする.

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

が任意の $z \in D$ について存在するとき、関数 f は領域 D で複素微分可能(正則)であるという.

複素関数の場合には、微分可能であるための一般的な条件が存在する (実関数の場合にはそのような条件は無い)

コーシー・リーマンの方程式:

$$\frac{\partial \Re\{f\}}{\partial x} = \frac{\partial \Im\{f\}}{\partial y}, \quad \frac{\partial \Re\{f\}}{\partial y} = -\frac{\partial \Im\{f\}}{\partial x}$$

関数fは、実微分可能でありかつコーシー・リーマンの方程式が成り立つとき、またそのときに限り、複素微分可能

コーシー・リーマンの方程式

複素微分可能= $\Delta f = K\Delta z$ なるKが Δz に依存せずに定まる

$$\Delta f = K\Delta z = K(\Delta x + j\Delta y) = K\Delta x + jK\Delta y$$

一方,
$$f(z) = u(x,y) + \mathrm{j}v(x,y)$$
 とすると

$$\Delta f = \Delta u + j\Delta v = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + j \left(\frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y \right)$$

$$= \left(\frac{\partial u}{\partial x} + j\frac{\partial v}{\partial x}\right)\Delta x + \left(\frac{\partial u}{\partial y} + j\frac{\partial v}{\partial y}\right)\Delta y$$

 $\Delta x, \Delta y$ に依存せずに K が一意に定まるので

$$j\left(\frac{\partial u}{\partial x} + j\frac{\partial v}{\partial x}\right) = \frac{\partial u}{\partial y} + j\frac{\partial v}{\partial y}$$

よって

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

$$f(z) = |z|^2 = zz^*$$
 の微分

コスト関数によく現れる $f(z) = |z|^2 = zz^*$ の微分を考える

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{|z + \Delta z|^2 - |z|^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(z + \Delta z)(z + \Delta z)^* - zz^*}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta zz^* + z(\Delta z)^* + \Delta z(\Delta z)^*}{\Delta z}$$

 $\Delta z = \Delta x + j\Delta y, \quad (\Delta x, \Delta y \in \mathbb{R})$ とすると

$$\frac{\Delta zz^* + z(\Delta z)^* + \Delta z(\Delta z)^*}{\Delta z} = \frac{(\Delta x + j\Delta y)z^* + z(\Delta x - j\Delta y) + \Delta x^2 + \Delta y^2}{\Delta x + j\Delta y}$$

- i) $\Delta x \to 0$ とすると $z^* z \mathrm{j}\Delta y$ となり, $\Delta y \to 0$ として $z^* z$
- ii) $\Delta y \to 0$ とすると $z^* + z + \Delta x$ となり, $\Delta x \to 0$ として $z^* + z$

 $\Delta z \rightarrow 0$ の近づけかたによって値が異なるので極限が存在しない(正則でない)

 $f(z) = x^2 + y^2$ は直感的にも「滑らか」な関数だが、複素関数は滑らかでも微分可能とは限らない

ウィルティンガー微分(1/2)

独立な変数 $x,y \in \mathbb{R}$ を引数にもつ関数 f の全微分:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

ここで、
$$z=x+\mathrm{j}y$$
 より $dz=dx+\mathrm{j}dy$ と書けることから $z^*=x-\mathrm{j}y$ より $dz^*=dx-\mathrm{j}dy$

$$dx = \frac{1}{2}(dz + dz^*), \quad dy = \frac{1}{2j}(dz - dz^*)$$
 となる. これを代入して

$$df = \frac{\partial f}{\partial x} \frac{dz + dz^*}{2} + \frac{\partial f}{\partial y} \frac{dz - dz^*}{2j}$$

$$= \frac{1}{2} \left(\frac{\partial f}{\partial x} - j \frac{\partial f}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} \right) dz^*$$

一方,zと z^* を(形式的に)独立な変数とみなすと

$$df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial z^*}dz^*$$

ウィルティンガー微分(2/2)

スカラー値関数のウィルティンガー微分(引数が複素数の場合):

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - j \frac{\partial f}{\partial y} \right)$$
$$\frac{\partial f}{\partial z^*} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} \right)$$

$$\frac{\partial z}{\partial z} = \frac{1}{2} \left(\frac{\partial (x + jy)}{\partial x} - j \frac{\partial (x + jy)}{\partial y} \right) = \frac{1}{2} (1 - j \cdot j) = 1$$

$$\frac{\partial z^*}{\partial z^*} = \frac{1}{2} \left(\frac{\partial (x - jy)}{\partial x} + j \frac{\partial (x - jy)}{\partial y} \right) = \frac{1}{2} (1 + j \cdot (-j)) = 1$$

$$\frac{\partial z}{\partial z^*} = \frac{1}{2} \left(\frac{\partial (x + jy)}{\partial x} + j \frac{\partial (x + jy)}{\partial y} \right) = \frac{1}{2} (1 + j \cdot j) = 0$$

$$\frac{\partial z^*}{\partial z} = \frac{1}{2} \left(\frac{\partial (x - jy)}{\partial x} - j \frac{\partial (x - jy)}{\partial y} \right) = \frac{1}{2} (1 - j \cdot (-j)) = 0$$

 $\Rightarrow z, z^*$ による偏微分では、これらを独立な変数として扱ってよい

コーシー・リーマンの方程式 (別表現)

ウィルティンガー微分を用いると

$$\frac{\partial f}{\partial z^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} \left(\Re\{f\} + j\Im\{f\} \right) + j \frac{\partial}{\partial y} \left(\Re\{f\} + j\Im\{f\} \right) \right)$$
$$= \frac{1}{2} \left(\frac{\partial \Re\{f\}}{\partial x} - \frac{\partial \Im\{f\}}{\partial y} \right) + \frac{j}{2} \left(\frac{\partial \Re\{f\}}{\partial y} + \frac{\partial \Im\{f\}}{\partial x} \right)$$

となるので,

$$\frac{\partial \Re\{f\}}{\partial x} = \frac{\partial \Im\{f\}}{\partial y} \iff \frac{\partial f}{\partial z^*} = 0$$

$$\frac{\partial \Re\{f\}}{\partial y} = -\frac{\partial \Im\{f\}}{\partial x}$$

-複素微分可能な関数は z^* に依存しない(を含まない) -複素数を引数にもつ関数が実数値を取るためには虚部を打ち消す 必要があり、そのような関数は一般に z^* にも依存する。

ウィルティンガー微分 (ベクトル引数)(1/2)

複素数値をとる関数の引数が複素ベクトル $\mathbf{z} = [z_1 \cdots z_M]^\mathrm{T} \in \mathbb{C}^M$ の場合

$$z_m = x_m + jy_m, (x_m, y_m \in \mathbb{R})$$
 とすると

 $dz_m = dx_m + jdy_m, dz_m^* = dx_m - jdy_m$ より、 $f(\mathbf{z})$ の全微分は

$$df = \sum_{m=1}^{M} \left(\frac{\partial f}{\partial x_m} dx_m + \frac{\partial f}{\partial y_m} dy_m \right)$$

$$= \sum_{m=1}^{M} \left\{ \frac{1}{2} \left(\frac{\partial f}{\partial x_m} - j \frac{\partial f}{\partial y_m} \right) dz_m + \frac{1}{2} \left(\frac{\partial f}{\partial x_m} + j \frac{\partial f}{\partial y_m} \right) dz_m^* \right\}$$

一方, z, z* を独立な変数として

$$df = \frac{\partial f}{\partial \mathbf{z}} d\mathbf{z} + \frac{\partial f}{\partial \mathbf{z}^*} d\mathbf{z}^*$$

ただし、
$$\frac{\partial f}{\partial \mathbf{z}} = \begin{bmatrix} \frac{\partial f}{\partial z_1} & \cdots & \frac{\partial f}{\partial z_M} \end{bmatrix}, \quad d\mathbf{z} = \begin{bmatrix} dz_1 & \cdots & dz_M \end{bmatrix}^{\mathrm{T}}$$

$$\frac{\partial f}{\partial \mathbf{z}^*} = \begin{bmatrix} \frac{\partial f}{\partial z_1^*} & \cdots & \frac{\partial f}{\partial z_M^*} \end{bmatrix}, \quad d\mathbf{z}^* = \begin{bmatrix} dz_1^* & \cdots & dz_M^* \end{bmatrix}^{\mathrm{T}}$$

ウィルティンガー微分 (ベクトル引数)(2/2)

スカラー値関数のウィルティンガー微分(ベクトル引数の場合):

$$\frac{\partial f}{\partial \mathbf{z}} = \left[\frac{\partial f}{\partial z_1} \cdots \frac{\partial f}{\partial z_M} \right] \\
= \left[\frac{1}{2} \left(\frac{\partial f}{\partial x_1} - j \frac{\partial f}{\partial y_1} \right) \cdots \frac{1}{2} \left(\frac{\partial f}{\partial x_M} - j \frac{\partial f}{\partial y_M} \right) \right] \\
\frac{\partial f}{\partial \mathbf{z}^*} = \left[\frac{\partial f}{\partial z_1^*} \cdots \frac{\partial f}{\partial z_M^*} \right] \\
= \left[\frac{1}{2} \left(\frac{\partial f}{\partial x_1} + j \frac{\partial f}{\partial y_1} \right) \cdots \frac{1}{2} \left(\frac{\partial f}{\partial x_M} + j \frac{\partial f}{\partial y_M} \right) \right]$$

 $\frac{\partial f}{\partial \mathbf{z}}$, $\frac{\partial f}{\partial \mathbf{z}^*}$ を行と列のどちらのベクトルで定義するかは文献毎に流儀があるここでは、行ベクトルで定義し、

$$rac{\partial f}{\partial \mathbf{z}^{\mathrm{H}}} = \left(rac{\partial f}{\partial \mathbf{z}^{*}}
ight)^{\mathrm{T}}$$

複素勾配 (1/2)

複素ベクトルを引数にもつスカラー値関数 f の複素勾配:

$$\mathbf{\nabla} f = egin{bmatrix} rac{\partial f}{\partial \mathbf{z}} & rac{\partial f}{\partial \mathbf{z}^*} \end{bmatrix}$$

信号処理の教科書で多く見られる勾配ベクトルの定義:

$$\nabla_{e}f = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} + j\frac{\partial f}{\partial y_{1}} \\ \frac{\partial f}{\partial x_{2}} + j\frac{\partial f}{\partial y_{2}} \\ \vdots \\ \frac{\partial f}{\partial x_{M}} + j\frac{\partial f}{\partial y_{M}} \end{bmatrix} = 2\frac{\partial f}{\partial \mathbf{z}^{H}}$$

問題無いか?

複素ベクトルを引数にもつスカラー実数値関数 f について以下の3つの条件は同値

$$\mathbf{\nabla} f = \mathbf{0} \iff \frac{\partial f}{\partial \mathbf{z}} = \mathbf{0} \iff \frac{\partial f}{\partial \mathbf{z}^*} = \mathbf{0}$$

複素勾配 (2/2)

$$df = \frac{\partial f}{\partial \mathbf{z}} d\mathbf{z} + \frac{\partial f}{\partial \mathbf{z}^*} d\mathbf{z}^* \quad \sharp \, \, \mathcal{D}, \quad - 殿 に 次 が 成 立$$

$$\frac{\partial f^*}{\partial \mathbf{z}^*} = \left(\frac{\partial f}{\partial \mathbf{z}}\right)^* \qquad df^* = \frac{\partial f^*}{\partial \mathbf{z}} d\mathbf{z} + \frac{\partial f^*}{\partial \mathbf{z}^*} d\mathbf{z}^*$$

$$(df)^* = df^* = \left(\frac{\partial f}{\partial \mathbf{z}}\right)^* d\mathbf{z}^* + \left(\frac{\partial f}{\partial \mathbf{z}^*}\right)^* d\mathbf{z}$$

特に、f が実数値関数の場合は $f=f^*$ より

$$\frac{\partial f}{\partial \mathbf{z}^*} = \left(\frac{\partial f}{\partial \mathbf{z}}\right)^*$$

したがって,
$$\frac{\partial f}{\partial \mathbf{z}^*} = \mathbf{0} \iff \frac{\partial f}{\partial \mathbf{z}} = \mathbf{0} \iff \mathbf{\nabla} f = \mathbf{0}$$

ウィルティガー微分の計算ルール

-複素数 z = x + jy についての微分:

$$\frac{\partial z}{\partial z} = 1 \quad \frac{\partial z^*}{\partial z^*} = 1 \quad \frac{\partial f(z)}{\partial z} = \frac{1}{2} \left(\frac{\partial f(z)}{\partial x} - j \frac{\partial f(z)}{\partial y} \right)$$
$$\frac{\partial z}{\partial z^*} = 0 \quad \frac{\partial z^*}{\partial z} = 0 \quad \frac{\partial f(z)}{\partial z^*} = \frac{1}{2} \left(\frac{\partial f(z)}{\partial x} + j \frac{\partial f(z)}{\partial y} \right)$$

-複素数の列ベクトル Z についての微分:

$$\begin{split} \frac{\partial}{\partial \mathbf{z}^{\mathrm{H}}} \left(\mathbf{z}^{\mathrm{H}} \mathbf{a} \right) &= \mathbf{a} & \frac{\partial}{\partial \mathbf{z}^{\mathrm{H}}} \left(\mathbf{a}^{\mathrm{H}} \mathbf{z} \right) = \mathbf{0} \\ \frac{\partial}{\partial \mathbf{z}^{\mathrm{H}}} \left(\mathbf{z}^{\mathrm{H}} \mathbf{A} \mathbf{z} \right) &= \mathbf{A} \mathbf{z} \end{split}$$

-複素数の行列 Z についての微分:

$$\begin{split} \frac{\partial}{\partial \mathbf{Z}^{H}} \left(\operatorname{tr} \left\{ \mathbf{Z}^{H} \mathbf{A} \right\} \right) &= \mathbf{A} & \frac{\partial}{\partial \mathbf{Z}^{H}} \left(\operatorname{tr} \left\{ \mathbf{A}^{H} \mathbf{Z} \right\} \right) = \mathbf{0} \\ \frac{\partial}{\partial \mathbf{Z}^{H}} \left(\operatorname{tr} \left\{ \mathbf{Z}^{H} \mathbf{A} \mathbf{Z} \right\} \right) &= \mathbf{A} \mathbf{Z} \end{split}$$

a:定係数ベクトル

A: 定係数行列

目次

- ❖ 基礎事項
 - 相関行列とその性質
 - ウィルティンガー微分
- ❖ 種々の信号処理手法
 - ■問題設定
 - 各信号処理手法の説明
- ❖ 具体例

問題設定

-考えるモデル (線形回帰モデル):

$$M \mid \mathbf{y} = \mathbf{A} \mid \mathbf{x} + \mathbf{v}$$

未知のベクトル:

$$\mathbf{x} = [x_1 \ \cdots \ x_N]^{\mathrm{T}} \in \mathbb{C}^N$$

既知の観測行列:

$$\mathbf{A} = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_N] \in \mathbb{C}^{M \times N}$$

既知の観測ベクトル:

$$\mathbf{y} = [y_1 \ \cdots \ y_M]^{\mathrm{T}} \in \mathbb{C}^M$$

白色付加雑音ベクトル:

$$\mathbf{v} = [v_1 \ \cdots \ v_M]^{\mathrm{T}} \in \mathbb{C}^M$$

基本的な信号処理手法

- -ZF推定
- -最小2乗法
- -最小ノルム解
- -正則化最小2乗法
- -MMSE推定(一般,線形)
- -減算型干渉除去(逐次,並列)
- -最大事後確率推定
- -最尤推定
- -最大比合成
- -部分空間法
- -圧縮センシング

ZF (zero-forcing) 推定 (1/4)

モデル: y = Ax + v

目的: A, y から x を推定

仮定:各行列・ベクトルは確定的. A は正方or縦長.

アイデア:雑音が無いと思って x を推定

-ZF推定値: $\hat{\mathbf{x}}_{zf} = \mathbf{W}_{zf}^{H}\mathbf{y} = \mathbf{x} + \mathbf{W}_{zf}^{H}\mathbf{v}$

ただし、行列 \mathbf{W}_{zf} は $\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}\mathbf{A} = \mathbf{I}$ を満足

-行列 \mathbf{W}_{zf} の決め方:

M=N のとき、 $\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}=\mathbf{A}^{-1}$

M>N のとき、 \mathbf{W}_{zf} が一意に定まらない($\hat{\mathbf{x}}_{\mathrm{zf}}$ のSNR最大化)

M < N のとき、 \mathbf{W}_{zf} が存在しない \rightarrow 最小ノルム解、圧縮センシング

ZF (zero-forcing) 推定 (2/4)

-M>N のときの行列 \mathbf{W}_{zf} の決め方:

$$\hat{\mathbf{x}}_{\mathrm{zf}}$$
 のSNR最大化 = $\hat{\mathbf{x}}_{\mathrm{zf}}$ の雑音電力最小化(Sが に依頼しないから)

$$\hat{\mathbf{x}}_{\mathrm{zf}}$$
 の雑音電力:
$$E\left[(\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}\mathbf{v})^{\mathrm{H}}\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}\mathbf{v}\right] = E\left[\mathrm{tr}\left\{\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}\mathbf{v}(\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}\mathbf{v})^{\mathrm{H}}\right\}\right]$$

$$= E\left[\mathrm{tr}\left\{\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}\mathbf{v}\mathbf{v}^{\mathrm{H}}\mathbf{W}_{\mathrm{zf}}\right\}\right]$$

$$= \operatorname{tr}\left\{\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}E[\mathbf{v}\mathbf{v}^{\mathrm{H}}]\mathbf{W}_{\mathrm{zf}}\right\}$$

$$= \sigma_{\mathrm{v}}^{2}\mathrm{tr}\left\{\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}\mathbf{W}_{\mathrm{zf}}\right\}$$

制約付き最適化問題:

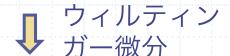
$$\mathbf{W}_{\mathrm{zf}} = \arg\min_{\mathbf{W} \in \mathbb{C}^{M \times N}} \mathrm{tr} \left\{ \mathbf{W}^{\mathrm{H}} \mathbf{W} \right\} \ s.t. \ \mathbf{W}^{\mathrm{H}} \mathbf{A} = \mathbf{I}$$

ZF (zero-forcing) 推定 (3/4)

ラグランジュ関数:

$$\mathcal{L}_{\mathrm{zf}}(\mathbf{W}) = \mathrm{tr}\left\{\mathbf{W}^{\mathrm{H}}\mathbf{W}\right\} + \sum_{n=1}^{N} \boldsymbol{\phi}_{n}^{\mathrm{H}}(\mathbf{W}^{\mathrm{H}}\mathbf{a}_{n} - \mathbf{e}_{n})$$

$$=\mathrm{tr}\left\{\mathbf{W}^{\mathrm{H}}\mathbf{W}
ight\}+\sum_{n=1}^{N}\mathrm{tr}\left\{(\mathbf{W}^{\mathrm{H}}\mathbf{a}_{n}-\mathbf{e}_{n})oldsymbol{\phi}_{n}^{\mathrm{H}}
ight\}$$



 ϕ_n : ラグランジュ乗数からなるベクトル

 \mathbf{e}_n : n番目の成分のみが1, 他が0のベクトル

$$rac{\partial \mathcal{L}_{\mathrm{zf}}(\mathbf{W})}{\partial \mathbf{W}^{\mathrm{H}}} = \mathbf{W} + \sum_{n=1}^{N} \mathbf{a}_{n} \boldsymbol{\phi}_{n}^{\mathrm{H}} = \mathbf{W} + \mathbf{A} \boldsymbol{\Phi}^{\mathrm{H}} \qquad \quad \boldsymbol{\Phi} = [\boldsymbol{\phi}_{1} \; \cdots \; \boldsymbol{\phi}_{N}]$$

$$\mathbf{W}_{\mathrm{zf}} = -\mathbf{A}\mathbf{\Phi}^{\mathrm{H}}$$
 $\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}}\mathbf{A} = \mathbf{I}$:制約式

$$\mathbf{\Phi} = -(\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-1}$$
 \Longrightarrow $\mathbf{W}_{\mathrm{zf}}^{\mathrm{H}} = (\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{H}}$

ZF (zero-forcing) 推定 (4/4)

-ZF推定の問題点(雑音強調):

 $\hat{\mathbf{x}}_{\mathrm{zf}}$ の雑音電力:

$$\sigma_{v}^{2} \operatorname{tr} \left\{ \mathbf{W}_{zf}^{H} \mathbf{W}_{zf} \right\} = \sigma_{v}^{2} \operatorname{tr} \left\{ (\mathbf{A}^{H} \mathbf{A})^{-1} \mathbf{A}^{H} \mathbf{A} (\mathbf{A}^{H} \mathbf{A})^{-H} \right\} \\
= \sigma_{v}^{2} \operatorname{tr} \left\{ (\mathbf{A}^{H} \mathbf{A})^{-1} \right\} \\
= \sigma_{v}^{2} \operatorname{tr} \left\{ (\mathbf{V} \mathbf{\Xi}^{2} \mathbf{V}^{H})^{-1} \right\} \\
= \sigma_{v}^{2} \operatorname{tr} \left\{ \mathbf{V} \mathbf{\Xi}^{-2} \mathbf{V}^{H} \right\} \\
= \sigma_{v}^{2} \operatorname{tr} \left\{ \mathbf{\Xi}^{-2} \right\} \\
= \sigma_{v}^{2} \sum_{n=1}^{N} \frac{1}{|\xi_{n}|^{2}} \qquad \xi_{n} \, \vec{n} - \vec{n} - \vec{n} = 0 \vec{n} \cdot \vec{n} \cdot \vec{n} \cdot \vec{n} = 0 \vec{n} \cdot \vec{$$

$$\mathbf{A}$$
 の特異値分解: $\mathbf{A} = \mathbf{U} \begin{bmatrix} \mathbf{\Xi} \\ \mathbf{0}_{(M-N) \times N} \end{bmatrix} \mathbf{V}^{\mathrm{H}}$

 \mathbf{U}, \mathbf{V} : ユニタリ行列 $\mathbf{\Xi} = \operatorname{diag}[\xi_1 \, \cdots \, \xi_N]$: 特異値からなる対角行列

最小2乗推定

モデル: $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$

目的: A, yからxを推定

仮定:各行列・ベクトルは確定的. A は正方or縦長.

アイデア: $||\mathbf{A}\mathbf{x} - \mathbf{y}||_2$ を最小にする \mathbf{x} を選択

-最小2乗推定值:

$$egin{aligned} \hat{\mathbf{x}}_{\mathrm{ls}} &= \arg\min_{\mathbf{x} \in \mathbb{C}^N} ||\mathbf{A}\mathbf{x} - \mathbf{y}||_2^2 \ &= (\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{H}}\mathbf{y} \end{aligned}$$

ZF推定と本質的に同じ

$$||\mathbf{A}\mathbf{x} - \mathbf{y}||_{2}^{2} = (\mathbf{A}\mathbf{x} - \mathbf{y})^{H}(\mathbf{A}\mathbf{x} - \mathbf{y})$$

$$= \mathbf{x}^{H}\mathbf{A}^{H}\mathbf{A}\mathbf{x} - \mathbf{x}^{H}\mathbf{A}^{H}\mathbf{y} - \mathbf{y}^{H}\mathbf{A}\mathbf{x} + \mathbf{y}^{H}\mathbf{y}$$

$$\frac{\partial}{\partial \mathbf{x}^{H}}||\mathbf{A}\mathbf{x} - \mathbf{y}||_{2}^{2} = \mathbf{A}^{H}\mathbf{A}\mathbf{x} - \mathbf{A}^{H}\mathbf{y} = \mathbf{0}$$

最小ノルム解

モデル: y = Ax (雑音があってもよい)

目的: A, y から x を推定

仮定:各行列・ベクトルは確定的 A は横長

アイデア: $\mathbf{y} = \mathbf{A}\mathbf{x}$ を満たす無限個の候補の \mathbf{x} から $||\mathbf{x}||_2$ が最小のもの

を選択(正則化)

-最小ノルム解: $\hat{\mathbf{x}}_{mn} = \arg\min_{\mathbf{x} \in \mathbb{C}^N} ||\mathbf{x}||_2^2 \ s.t. \ \mathbf{y} = \mathbf{A}\mathbf{x}$

-ラグランジュ関数: $\mathcal{L}_{mn}(\mathbf{x}) = ||\mathbf{x}||_2^2 + (\mathbf{A}\mathbf{x} - \mathbf{y})^H \boldsymbol{\phi}$ $= \mathbf{x}^{\mathrm{H}}\mathbf{x} + \mathbf{x}^{\mathrm{H}}\mathbf{A}^{\mathrm{H}}\boldsymbol{\phi} - \mathbf{y}^{\mathrm{H}}\boldsymbol{\phi}$

$$rac{\partial \mathcal{L}_{\mathrm{mn}}(\mathbf{x})}{\partial \mathbf{x}^{\mathrm{H}}} = \mathbf{0}$$

$$\hat{\mathbf{x}}_{mn} = -\mathbf{A}^{H} \boldsymbol{\phi} \quad \mathbf{y} = \mathbf{A} \mathbf{x}$$

$$\phi = -(\mathbf{A}\mathbf{A}^{\mathrm{H}})^{-1}\mathbf{y} \implies \hat{\mathbf{x}}_{\mathrm{mn}} = \mathbf{A}^{\mathrm{H}}(\mathbf{A}\mathbf{A}^{\mathrm{H}})^{-1}\mathbf{y}$$

$$\hat{\mathbf{x}}_{\mathrm{mn}} = \mathbf{A}^{\mathrm{H}} (\mathbf{A} \mathbf{A}^{\mathrm{H}})^{-1} \mathbf{y}$$

正則化最小2乗法

モデル: y = Ax (雑音があってもよい)

目的: A, y から x を推定

仮定:各行列・ベクトルは確定的. A は横長.

アイデア: $||\mathbf{A}\mathbf{x} - \mathbf{y}||_2$ と $||\mathbf{x}||_2$ の重み付け和が最小のものを選択

-正則化最小2乗法: $\hat{\mathbf{x}}_{\mathrm{rls}} = \arg\min_{\mathbf{x} \in \mathbb{C}^N} \left(||\mathbf{A}\mathbf{x} - \mathbf{y}||_2^2 + \lambda ||\mathbf{x}||_2^2 \right)$

-コスト関数:
$$J_{\text{rls}}(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{y})^{\text{H}}(\mathbf{A}\mathbf{x} - \mathbf{y}) + \lambda \mathbf{x}^{\text{H}}\mathbf{x}$$

$$= \mathbf{x}^{\text{H}}\mathbf{A}^{\text{H}}\mathbf{A}\mathbf{x} - \mathbf{x}^{\text{H}}\mathbf{A}^{\text{H}}\mathbf{y} - \mathbf{y}^{\text{H}}\mathbf{A}\mathbf{x} + \mathbf{y}^{\text{H}}\mathbf{y} + \lambda \mathbf{x}^{\text{H}}\mathbf{x}$$

$$rac{\partial J_{
m rls}(\mathbf{x})}{\partial \mathbf{x}^{
m H}} = \mathbf{A}^{
m H} \mathbf{A} \mathbf{x} - \mathbf{A}^{
m H} \mathbf{y} + \lambda \mathbf{x}$$

$$1 = 0$$

$$\hat{\mathbf{x}}_{\mathrm{rls}} = (\lambda \mathbf{I} + \mathbf{A}^{\mathrm{H}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{y}$$

一般のMMSE推定 (1/2)

モデル:条件付き密度関数

目的: \mathbf{y} および、 $p(\mathbf{x}|\mathbf{y})$ から \mathbf{x} を推定

仮定: x,y は確率的.

アイデア:ベクトル値の非線形関数 f を用いて y から推定値を得るとし、

関数として平均2乗誤差を最小にするものを選ぶ

一般のMMSE推定値: $\hat{\mathbf{x}}_{\mathrm{mmse}} = \mathbf{f}(\mathbf{y})$

非線形関数 \mathbf{f} は $J_{\text{mmse}}[\mathbf{f}] = E[||\mathbf{f}(\mathbf{y}) - \mathbf{x}||_2^2|\mathbf{y}]$ を最小にするものを選択

$$\hat{\mathbf{x}}_{\text{mmse}} = \mathbf{f}(\mathbf{y}) = E[\mathbf{x}|\mathbf{y}] = \int \mathbf{x}p(\mathbf{x}|\mathbf{y})d\mathbf{x}$$
 :条件付き期待値

一般のMMSE推定 (2/2)

$$J_{\text{mmse}}[\mathbf{f}] = E \left[||\mathbf{f}(\mathbf{y}) - \mathbf{x}||_{2}^{2} ||\mathbf{y}| \right]$$

$$= E \left[||\mathbf{f}(\mathbf{y}) - E[\mathbf{x}|\mathbf{y}] + E[\mathbf{x}|\mathbf{y}] - \mathbf{x}||_{2}^{2} ||\mathbf{y}| \right]$$

$$= ||\mathbf{f}(\mathbf{y}) - E[\mathbf{x}|\mathbf{y}]||_{2}^{2} + E \left[||E[\mathbf{x}|\mathbf{y}] - \mathbf{x}||_{2}^{2} ||\mathbf{y}| \right]$$

$$+ \{\mathbf{f}(\mathbf{y}) - E[\mathbf{x}|\mathbf{y}]\}^{H} E \left[E[\mathbf{x}|\mathbf{y}] - \mathbf{x}||\mathbf{y}| \right]$$

$$+ E \left[\{E[\mathbf{x}|\mathbf{y}] - \mathbf{x}\}^{H} ||\mathbf{y}| \{\mathbf{f}(\mathbf{y}) - E[\mathbf{x}|\mathbf{y}]\} \right]$$

$$= ||\mathbf{f}(\mathbf{y}) - E[\mathbf{x}|\mathbf{y}]||_{2}^{2} + E \left[||E[\mathbf{x}|\mathbf{y}] - \mathbf{x}||_{2}^{2} ||\mathbf{y}| \right]$$

$$\geq E \left[||E[\mathbf{x}|\mathbf{y}] - \mathbf{x}||_{2}^{2} ||\mathbf{y}| \right]$$

等号成立は $\mathbf{f}(\mathbf{y}) = E[\mathbf{x}|\mathbf{y}]$

線形MMSE推定(1/2)

モデル: y = Ax + v (ただし、これに限らない)

目的: \mathbf{A} , \mathbf{y} および, $\mathbf{R}_{\mathbf{x}} = E[\mathbf{x}\mathbf{x}^{\mathrm{H}}]$ から \mathbf{x} を推定

仮定: \mathbf{A} は確定的 \mathbf{x}, \mathbf{v} は確率的(独立, 平均0)

アイデア: y に行列を乗算することで推定値を得るとし、行列として

平均2乗誤差を最小にするものを選ぶ

-線形MMSE推定值: $\hat{\mathbf{x}}_{lmmse} = \mathbf{W}_{lmmse}^{H} \mathbf{y}$

$$\mathbf{W}_{\text{lmmse}} = \arg\min_{\mathbf{W} \in \mathbb{C}^{M \times N}} E\left[||\mathbf{W}^{\text{H}}(\mathbf{A}\mathbf{x} + \mathbf{v}) - \mathbf{x}||_{2}^{2}\right]$$

-コスト関数:

$$J_{\text{lmmse}}(\mathbf{W}) = E \left[||\mathbf{W}^{\text{H}}(\mathbf{A}\mathbf{x} + \mathbf{v}) - \mathbf{x}||_{2}^{2} \right]$$

$$= E \left[(\mathbf{W}^{\text{H}}\mathbf{A}\mathbf{x} + \mathbf{W}^{\text{H}}\mathbf{v} - \mathbf{x})^{\text{H}}(\mathbf{W}^{\text{H}}\mathbf{A}\mathbf{x} + \mathbf{W}^{\text{H}}\mathbf{v} - \mathbf{x}) \right]$$

$$= E \left[\text{tr} \{ (\mathbf{W}^{\text{H}}\mathbf{A}\mathbf{x} + \mathbf{W}^{\text{H}}\mathbf{v} - \mathbf{x})(\mathbf{W}^{\text{H}}\mathbf{A}\mathbf{x} + \mathbf{W}^{\text{H}}\mathbf{v} - \mathbf{x})^{\text{H}} \} \right]$$

線形MMSE推定(2/2)

 $\mathbf{W}_{\mathrm{lmmse}}^{\mathrm{H}} = \mathbf{R}_{\mathrm{x}}\mathbf{A}^{\mathrm{H}}\left(\mathbf{A}\mathbf{R}_{\mathrm{x}}\mathbf{A}^{\mathrm{H}} + \sigma_{\mathrm{v}}^{2}\mathbf{I}\right)^{-1}$

$$J_{\text{lmmse}}(\mathbf{W}) = E \left[\text{tr} \{ (\mathbf{W}^{\text{H}} \mathbf{A} \mathbf{x} + \mathbf{W}^{\text{H}} \mathbf{v} - \mathbf{x}) (\mathbf{W}^{\text{H}} \mathbf{A} \mathbf{x} + \mathbf{W}^{\text{H}} \mathbf{v} - \mathbf{x})^{\text{H}} \} \right]$$

$$= \text{tr} \left\{ \mathbf{W}^{\text{H}} \mathbf{A} E [\mathbf{x} \mathbf{x}^{\text{H}}] \mathbf{A}^{\text{H}} \mathbf{W} \right\} + \text{tr} \left\{ \mathbf{W}^{\text{H}} \mathbf{A} E [\mathbf{x} \mathbf{v}^{\text{H}}] \mathbf{W} \right\}$$

$$- \text{tr} \left\{ \mathbf{W}^{\text{H}} \mathbf{A} E [\mathbf{x} \mathbf{x}^{\text{H}}] \right\} + \text{tr} \left\{ \mathbf{W}^{\text{H}} E [\mathbf{v} \mathbf{x}^{\text{H}}] \mathbf{A}^{\text{H}} \mathbf{W} \right\}$$

$$+ \text{tr} \left\{ \mathbf{W}^{\text{H}} E [\mathbf{v} \mathbf{v}^{\text{H}}] \mathbf{W} \right\} - \text{tr} \left\{ \mathbf{W}^{\text{H}} E [\mathbf{v} \mathbf{x}^{\text{H}}] \right\}$$

$$- \text{tr} \left\{ E [\mathbf{x} \mathbf{x}^{\text{H}}] \mathbf{A}^{\text{H}} \mathbf{W} \right\} - \text{tr} \left\{ E [\mathbf{x} \mathbf{v}^{\text{H}}] \mathbf{W} \right\} + \text{tr} \left\{ E [\mathbf{x} \mathbf{x}^{\text{H}}] \right\}$$

$$- \text{tr} \left\{ \mathbf{R}_{\mathbf{x}} \mathbf{A}^{\text{H}} \mathbf{W} \right\} + \text{tr} \left\{ \mathbf{R}_{\mathbf{x}} \right\}$$

$$\frac{\partial J_{\text{lmmse}}(\mathbf{W})}{\partial \mathbf{W}^{\text{H}}} = \mathbf{A} \mathbf{R}_{\mathbf{x}} \mathbf{A}^{\text{H}} \mathbf{W} - \mathbf{A} \mathbf{R}_{\mathbf{x}} + \sigma_{\mathbf{v}}^{2} \mathbf{W}$$

$$\mathbf{J} = \mathbf{0}$$

各ベクトルがガウス分布に従うとき、一般のMMSE推定と同じ推定値

減算型干渉除去(逐次干渉除去)

モデル: y = Ax + v (ただし、これに限らない)

目的: A, y からx を推定

仮定: A は確定的。観測y中でxの成分毎のSNRにばらつきがある。

アイデア: SNRの大きい成分から順に、他の成分を雑音とみなした復

号と、受信信号からの復号した成分の除去を繰り返す

 \mathbf{y} における \mathbf{x} の各成分のSNRが x_1, x_2, \ldots, x_N の順に小さくなるとする

$$\mathbf{y}_{\mathrm{sic}}^{(1)} = \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

$$\mathbf{y}_{\mathrm{sic}}^{(2)} = \mathbf{y} - \mathbf{a}_1 \hat{x}_{\mathrm{sic},1}$$

$$pprox \mathbf{a}_2 x_2 + \left(\sum_{i=3}^N \mathbf{a}_i x_i + \mathbf{v}\right)$$
 \Rightarrow x_2 の推定値 $\hat{x}_{\mathrm{sic},2} = \mathbf{w}_2^{\mathrm{H}} \mathbf{y}_{\mathrm{sic}}^{(2)}$

ガウス放送通信路で通信路容量領域の境界を達成可能

減算型干渉除去(並列干渉除去)

モデル: y = Ax + v (ただし、これに限らない)

目的: A, y からx を推定

仮定:Aは確定的. 観測y中でxの成分毎のSNRがほぼ同一.

アイデア:xの仮の推定値を用いて干渉成分を除去

線形推定などで観測 $\mathbf{y}_{\mathrm{pic}}^{(1)} = \mathbf{y}$ から仮推定値 $\hat{\mathbf{x}}_{\mathrm{pic}}^{(1)}$ が得られたとすると

$$egin{aligned} \mathbf{y}_{ ext{pic}}^{(2)} &= \mathbf{y} - \mathbf{A}_{ ext{offdiag}} \hat{\mathbf{x}}_{ ext{pic}}^{(1)} \ &= \mathbf{A}\mathbf{x} - \mathbf{A}_{ ext{offdiag}} \hat{\mathbf{x}}_{ ext{pic}}^{(1)} + \mathbf{v} \ &pprox \mathbf{A}_{ ext{diag}} \mathbf{x} + \mathbf{v} \end{aligned}$$

 A_{diag}: A の主対角成分の

 みからなる対角行列

 $\mathbf{A}_{\mathrm{offdiag}} = \mathbf{A} - \mathbf{A}_{\mathrm{diag}}$

最大事後確率推定

モデル:事後分布 $P(\mathbf{x}|\mathbf{y})$

目的: \mathbf{y} および, $P(\mathbf{x}|\mathbf{y})$ から \mathbf{x} を推定

仮定: \mathbf{x}, \mathbf{y} は確率的. $\mathbf{x} \in \mathcal{S}^N$, \mathcal{S} : 有限のシンボル集

アイデア:事後確率 $P(\mathbf{x}|\mathbf{y})$ を最大にする $\mathbf{x} \in \mathcal{S}^N$ を選択

$$\mathbf{y} = \mathbf{y}_o$$
を観測したとき、推定値 $\mathbf{x} = \hat{\mathbf{x}}$ が正しい確率は $\Pr(\mathbf{x} = \hat{\mathbf{x}}, \mathbf{y} = \mathbf{y}_o) = P(\hat{\mathbf{x}}|\mathbf{y}_o)p(\mathbf{y}_o)$

正しい確率が最大(誤り確率が最小)の推定値は $\hat{\mathbf{x}} = \text{arg max } P(\mathbf{x}|\mathbf{x})$

$$\hat{\mathbf{x}} = \arg \max_{\mathbf{x} \in \mathcal{S}^N} P(\mathbf{x} | \mathbf{y}_o)$$

最大事後確率(maximum a posteriori)推定 (ブロック毎):

$$\hat{\mathbf{x}}_{\text{map}} = \arg \max_{\mathbf{x} \in \mathcal{S}^N} P(\mathbf{x}|\mathbf{y})$$

最大事後マージナル(maximum posterior marginal)推定 (シンボル毎):

$$\hat{x}_{n,\text{mpm}} = \arg\max_{x_n \in \mathcal{S}} P(x_n|\mathbf{y})$$

確率伝搬法

最尤推定(1/2)

モデル:条件付き密度関数 $p(\mathbf{y}|\mathbf{x})$

目的: \mathbf{y} および、 $p(\mathbf{y}|\mathbf{x})$ から \mathbf{x} を推定

仮定: \mathbf{x} は確定的 (パラメータ) , \mathbf{y} は確率的. $\mathbf{x} \in \mathcal{S}^N$

アイデア: 尤度関数 $p(\mathbf{y}|\mathbf{x})$ を最大にする $\mathbf{x} \in \mathcal{S}^N$ を選択

ベイズの定理
$$P(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})P(\mathbf{x})}{p(\mathbf{y})}$$

 $P(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x}) P(\mathbf{x}) \propto p(\mathbf{y}|\mathbf{x})$

事前分布が一様のとき

-最尤推定: $\hat{\mathbf{x}}_{\text{ml}} = \arg \max_{\mathbf{x} \in \mathcal{S}^N} p(\mathbf{y}|\mathbf{x})$

 $P(\mathbf{x}|\mathbf{y})$:事後分布

 $P(\mathbf{x})$:事前分布

 $p(\mathbf{y}|\mathbf{x})$:尤度関数

最尤推定 (2/2)

-特別な場合の最尤推定:

モデル: $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$

雑音 : ガウス雑音 のとき

尤度関数:
$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{\pi^M \det{\{\mathbf{R}_{\mathbf{v}}\}}} \exp{\left(-\frac{||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2}{\sigma_{\mathbf{v}}^2}\right)}$$

■最尤推定

$$\hat{\mathbf{x}}_{\text{ml}} = \arg\min_{\mathbf{x} \in \mathcal{S}^N} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2$$
 -ビタビアルゴリズム -球内復号法

最大比合成 (1/4)

モデル: $\mathbf{y} = \mathbf{a}x + \mathbf{v}$ (a が列ベクトル, x がスカラー)

目的: \mathbf{a} , \mathbf{y} から x を推定

仮定: \mathbf{a} は確定的 x, \mathbf{v} は確率的(独立, 平均0).

アイデア: SNRが最大になるように y_1, \ldots, y_M を線形合成

-合成後の信号:
$$\hat{x}_{mrc} = \mathbf{w}_{mrc}^{H} \mathbf{y}$$

$$= \mathbf{w}_{mrc}^{H} \mathbf{a} x + \mathbf{w}_{mrc}^{H} \mathbf{v}$$

$$\gamma_{\mathrm{mrc}} = \frac{E[|\mathbf{w}_{\mathrm{mrc}}^{\mathrm{H}} \mathbf{a}x|^{2}]}{E[|\mathbf{w}_{\mathrm{mrc}}^{\mathrm{H}} \mathbf{v}|^{2}]}$$

$$=rac{egin{aligned} E[|\mathbf{W}_{\mathrm{mrc}}^{\mathbf{H}}\mathbf{V}|^{2}] \ =rac{\sigma_{\mathrm{x}}^{2}\mathbf{w}_{\mathrm{mrc}}^{\mathrm{H}}\mathbf{a}\mathbf{a}^{\mathrm{H}}\mathbf{w}_{\mathrm{mrc}}}{\sigma_{\mathrm{y}}^{2}\mathbf{w}_{\mathrm{mrc}}^{\mathrm{H}}\mathbf{w}_{\mathrm{mrc}} \end{aligned}}$$

← レイリー商

-重み係数ベクトル **w**mrc の選択法:

行列 aa^H の最大固有値に相応する固有ベクトル= a

最大比合成 (2/4)

-最大比合成後のSNR:

$$\gamma_{\mathrm{mrc}} = rac{\sigma_{\mathrm{x}}^{2} \mathbf{a}^{\mathrm{H}} \mathbf{a} \mathbf{a}^{\mathrm{H}} \mathbf{a}}{\sigma_{\mathrm{v}}^{2} \mathbf{a}^{\mathrm{H}} \mathbf{a}}$$

$$= rac{\sigma_{\mathrm{x}}^{2} \mathbf{a}^{\mathrm{H}} \mathbf{a}}{\sigma_{\mathrm{v}}^{2}}$$

$$= rac{|a_{1}|^{2} \sigma_{\mathrm{x}}^{2}}{\sigma_{\mathrm{v}}^{2}} + rac{|a_{2}|^{2} \sigma_{\mathrm{x}}^{2}}{\sigma_{\mathrm{v}}^{2}} + \dots + rac{|a_{M}|^{2} \sigma_{\mathrm{x}}^{2}}{\sigma_{\mathrm{v}}^{2}}$$
各観測 y_{1}, \dots, y_{M} のSNRの和

最大比合成 (3/4)

モデル: y = Ax + v

目的: \mathbf{A} , \mathbf{y} および, $\mathbf{R}_{\mathbf{x}} = E[\mathbf{x}\mathbf{x}^{\mathrm{H}}]$ からSNRを最大化

仮定: \mathbf{A} は確定的。 \mathbf{x}, \mathbf{v} は確率的(独立,平均O)。 $\mathbf{x} \in \mathbb{C}^N$

アイデア: SNRが最大になるように y_1, \ldots, y_M を線形合成

-合成後の信号: $\hat{x}_{mrc} = \mathbf{w}_{mrc}^{H} \mathbf{y}$ \mathbf{x} の推定ではない \mathbf{x} の推定ではない \mathbf{x} とに注意

-合成後のSNR (雑音が白色の場合):

$$\gamma_{\rm mrc} = \frac{E[|\mathbf{w}_{\rm mrc}^{\rm H} \mathbf{A} \mathbf{x}|^2]}{E[|\mathbf{w}_{\rm mrc}^{\rm H} \mathbf{v}|^2]} = \frac{\mathbf{w}_{\rm mrc}^{\rm H} \mathbf{A} \mathbf{R}_{\rm x} \mathbf{A}^{\rm H} \mathbf{w}_{\rm mrc}}{\sigma_{\rm v}^2 \mathbf{w}_{\rm mrc}^{\rm H} \mathbf{w}_{\rm mrc}}$$

 $\mathbf{w}_{\mathrm{mrc}}$ は,行列 $\mathbf{A}\mathbf{R}_{\mathrm{x}}\mathbf{A}^{\mathrm{H}}$ の最大固有値に相応する固有ベクトル

最大比合成 (4/4)

-合成後のSNR (雑音が白色の場合):

$$\gamma_{\text{mrc}} = \frac{E[|\mathbf{w}_{\text{mrc}}^{\text{H}} \mathbf{A} \mathbf{x}|^{2}]}{E[|\mathbf{w}_{\text{mrc}}^{\text{H}} \mathbf{v}|^{2}]} = \frac{\mathbf{w}_{\text{mrc}}^{\text{H}} \mathbf{A} \mathbf{R}_{x} \mathbf{A}^{\text{H}} \mathbf{w}_{\text{mrc}}}{\mathbf{w}_{\text{mrc}}^{\text{H}} \mathbf{R}_{v} \mathbf{w}_{\text{mrc}}}$$

 $\mathbf{w}_{\mathrm{mrc}}$ は,行列 $\mathbf{A}\mathbf{R}_{\mathrm{x}}\mathbf{A}^{\mathrm{H}},\mathbf{R}_{\mathrm{v}}$ についての一般固有値問題

$$\mathbf{A}\mathbf{R}_{\mathrm{x}}\mathbf{A}^{\mathrm{H}}\mathbf{w} = \lambda\mathbf{R}_{\mathrm{v}}\mathbf{w}$$

の最大一般固有値に対応する一般固有ベクトル

部分空間法 (1/2)

モデル: y = Ax + v

目的: $\mathbf{y}, \mathbf{R}_{\mathbf{x}} = E[\mathbf{x}\mathbf{x}^{\mathbf{H}}]$ から行列 \mathbf{A} (のパラメータ)を推定

仮定:A は確定的で縦長。x,v は確率的(無相関、平均O)。

アイデア: y の相関行列の固有ベクトル間の直交性を利用

- y の相関行列:
$$\mathbf{R}_{\mathbf{y}} = E[\mathbf{y}\mathbf{y}^{\mathrm{H}}] = E[(\mathbf{A}\mathbf{x} + \mathbf{v})(\mathbf{A}\mathbf{x} + \mathbf{v})^{\mathrm{H}}]$$

 $= \mathbf{A}E[\mathbf{x}\mathbf{x}^{\mathrm{H}}]\mathbf{A}^{\mathrm{H}} + \mathbf{A}E[\mathbf{x}\mathbf{v}^{\mathrm{H}}] + E[\mathbf{v}\mathbf{x}^{\mathrm{H}}]\mathbf{A}^{\mathrm{H}} + E[\mathbf{v}\mathbf{v}^{\mathrm{H}}]$
 $= \mathbf{A}\mathbf{R}_{\mathbf{x}}\mathbf{A}^{\mathrm{H}} + \sigma_{\mathbf{v}}^{2}\mathbf{I}$

 \mathbf{R}_{y} の固有値: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_M$

 $\mathbf{AR}_{\mathbf{x}}\mathbf{A}^{\mathrm{H}}$ の固有値: $\nu_1 \geq \nu_2 \geq \cdots \geq \nu_M$

$$egin{aligned} \lambda_m \mathbf{q}_m &= \mathbf{R}_{\mathbf{y}} \mathbf{q}_m \ &= (\mathbf{A} \mathbf{R}_{\mathbf{x}} \mathbf{A}^{\mathrm{H}} + \sigma_{\mathbf{v}}^2 \mathbf{I}) \mathbf{q}_m \ &= (\nu_m + \sigma_{\mathbf{v}}^2) \mathbf{q}_m \end{aligned}$$
 固有ベクトル

$$\lambda_m = \nu_m + \sigma_{\rm v}^2 \quad , \quad m = 1, 2, \dots, M$$

部分空間法 (2/2)

$$M = \begin{bmatrix} N & N & N \\ \mathbf{R}_{\mathrm{x}} \end{bmatrix} + \begin{bmatrix} M \\ \mathbf{R}_{\mathrm{x}} \end{bmatrix}$$

-相関行列の固有ベクトルの張る空間:

信号部分空間: $\mathcal{S} = \mathcal{R}(\mathbf{Q}_{\mathrm{S}}), \ \mathbf{Q}_{\mathrm{S}} = [\mathbf{q}_{1}, \cdots, \mathbf{q}_{N}]$

雑音部分空間: $\mathcal{V} = \mathcal{R}(\mathbf{Q}_{\mathrm{N}}), \ \mathbf{Q}_{\mathrm{N}} = [\mathbf{q}_{N+1}, \cdots, \mathbf{q}_{M}]$

$$\mathcal{V} \perp \mathcal{S}$$
 (:: \mathbf{R}_{y} はエルミート行列)

$$S = \mathcal{R}(\mathbf{A})$$

$$\mathbf{q}_{m}^{\mathrm{H}}\mathbf{A} = \mathbf{0}, \quad m = N+1, \dots, M$$
 直交条件を用いて \mathbf{A} を求める

圧縮センシング (1/3)

モデル: y = Ax

目的: A, y から x を推定

仮定:各行列・ベクトルは確定的. A は横長.x はスパース.

アイデア: y = Ax を満たす無限個の候補のxから、スパース性を

手がかりに「真の解」を見つけ出す.

- ℓ0 再構成:

$$\hat{\mathbf{x}}_{\ell_0} = \arg\min_{\mathbf{x}} ||\mathbf{x}||_0 s.t. \ \mathbf{y} = \mathbf{A}\mathbf{x}$$

##

強力だが、一般にNP 困難

- ℓ1 再構成:

$$\hat{\mathbf{x}}_{\ell_1} = \arg\min_{\mathbf{x}} ||\mathbf{x}||_1 \quad s.t. \quad \mathbf{y} = \mathbf{A}\mathbf{x}$$
 各要素の絶対値の和

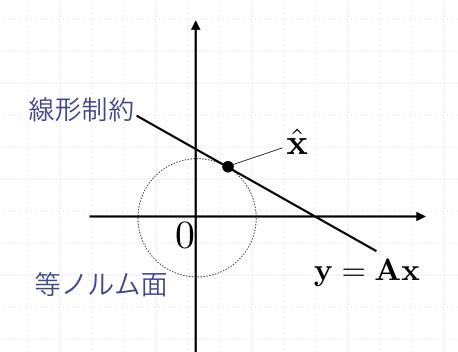
線形計画問題に帰着 M < N でもある条件の下で正しい解

圧縮センシング (2/3)

スパースな解が得られるしくみ:

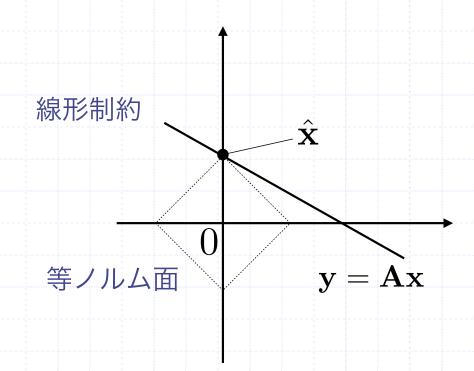
最小ノルム解:

$$\hat{\mathbf{x}}_{\mathrm{MN}} = \arg\min_{\mathbf{x}} ||\mathbf{x}||_{2}^{2}$$
subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$



ℓ_1 再構成:

$$\hat{\mathbf{x}}_{\ell_1} = \arg\min_{\mathbf{x}} ||\mathbf{x}||_1$$
subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$



圧縮センシング (3/3)

モデル: y = Ax + v

目的: A, y から x を推定

仮定:各行列・ベクトルは確定的. A は横長.x はスパース.

アイデア: $\mathbf{y} = \mathbf{A}\mathbf{x}$ をほぼ満足する無限個の候補の \mathbf{x} から,最もスパース なものを見つけ出す。

-不等式制約付き ℓ_1 再構成:

$$\hat{\mathbf{x}}_{c\ell_1} = \arg\min_{\mathbf{x}} ||\mathbf{x}||_1 \quad s.t. \quad ||\mathbf{A}\mathbf{x} - \mathbf{y}||_2^2 \le \epsilon$$

- $\ell_1 - \ell_2$ 再構成:

$$\hat{\mathbf{x}}_{\ell_1 - \ell_2} = \arg\min_{\mathbf{x}} \left(\mu ||\mathbf{x}||_1 + \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{y}||_2^2 \right)$$

-Lasso (least absolute shrinkage and selection operator)

$$\hat{\mathbf{x}}_{\text{lasso}} = \arg\min_{\mathbf{z}} ||\mathbf{A}\mathbf{x} - \mathbf{y}||_2^2 |s.t.||\mathbf{x}||_1 \le t$$

目次

- ❖ 基礎事項
 - 相関行列とその性質
 - ウィルティンガー微分
- ❖ 種々の信号処理手法
 - 問題設定
 - 各信号処理手法の説明
- ❖ 具体例

通信路等化 (1/2)

-周波数選択制通信路における受信信号モデル:

r = Hs + v

目的: r, H から s を推定

r : 受信信号ベクトル

H:通信路行列

s : 送信信号ベクトル

v:付加雑音ベクトル

-通信路行列の例:

$$\mathbf{H} = egin{bmatrix} h_L & \dots & h_0 & 0 & \dots & \dots & 0 \ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \ 0 & \dots & \dots & 0 & h_L & \dots & h_0 \end{pmatrix}$$

テプリッツ行列

通信路等化 (2/2)

-通信路行列が巡回行列の場合: $\mathbf{H} = \mathbf{D}^{\mathrm{H}} \mathbf{\Lambda} \mathbf{D}$

$$\mathbf{\Lambda} = \operatorname{diag}[\lambda_1 \, \cdots \, \lambda_M]$$

D:離散フーリエ変換行列

$$\begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_M \end{bmatrix} = \sqrt{M} \mathbf{D} \begin{bmatrix} h_0 \\ \vdots \\ h_L \\ \mathbf{0}_{(M-L-1)\times 1} \end{bmatrix}$$

-線形等化: $\hat{\mathbf{s}} = \mathbf{W}^{\mathrm{H}}\mathbf{r}$

ZF等化のとき

$$\mathbf{W}^{\mathrm{H}} = \mathbf{H}^{-1} = (\mathbf{D}^{\mathrm{H}} \boldsymbol{\Lambda} \mathbf{D})^{-1} = \mathbf{D}^{-1} \boldsymbol{\Lambda}^{-1} \mathbf{D}^{-\mathrm{H}} = \mathbf{D}^{\mathrm{H}} \boldsymbol{\Lambda}^{-1} \mathbf{D}$$

MMSE等化のとき

$$\mathbf{W}^{\mathrm{H}} = \sigma_{\mathrm{s}}^{2}\mathbf{H}^{\mathrm{H}}\left(\sigma_{\mathrm{s}}^{2}\mathbf{H}\mathbf{H}^{\mathrm{H}} + \sigma_{\mathrm{v}}^{2}\mathbf{I}\right)^{-1} = \mathbf{D}^{\mathrm{H}}\mathbf{\Lambda}^{\mathrm{H}}\left(\mathbf{\Lambda}\mathbf{\Lambda}^{\mathrm{H}} + \frac{\sigma_{\mathrm{v}}^{2}}{\sigma_{\mathrm{s}}^{2}}\mathbf{I}\right)^{-1}\mathbf{D}^{\mathrm{H}}$$

いずれも周波数領域の1タップ等化で実現される (SC-FDE方式, OFDM方式)

通信路応答推定

-周波数選択制通信路における受信パイロット信号モデル:

$$r = Hp + v$$

目的: **r**, **p** から**H**を推定

r : 受信パイロット信号ベクトル

H:通信路行列

p:送信パイロット信号ベクトル

v:付加雑音ベクトル

-通信路応答とパイロット信号の入れ替え

(Hが巡回行列の場合(テプリッツでも可)):

$$\mathbf{r} = \mathbf{H}\mathbf{p} + \mathbf{v}$$
 $= \mathbf{P}\mathbf{h} + \mathbf{v}$

$$\mathbf{P} = egin{bmatrix} p_1 & p_M & \dots & p_2 \ p_2 & p_1 & p_3 \ dots & \ddots & dots \ p_M & p_{M-1} & \dots & p_1 \end{bmatrix}$$

$$\mathbf{h} = egin{bmatrix} dots \ h_L \ 0 \ dots \ 0 \end{bmatrix}$$

 h_0

-最小2乗通信路応答推定: $\hat{\mathbf{h}} = \mathbf{P}^{-1}\mathbf{r}$

MIMO信号検出

-MIMO通信路における受信信号モデル:

r = Hs + v

目的: **r**, **H**から **s** を推定

r:受信信号ベクトル

H:通信路行列

s:送信信号ベクトル

v:付加雑音ベクトル

通信路等化との違いは、一般に H が構造をもたないこと (多くの場合、ランダム行列でモデル化)

⇒ ここまでに述べた、ほとんどすべての推定法がそのまま適用可能

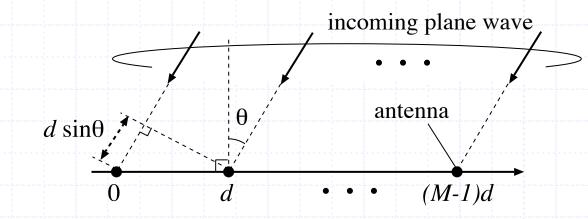
到来方向推定 (1/2)

-隣接素子間の位相差:

$$\phi_n = 2\pi \frac{d\sin\theta_n}{\eta}$$

η: 波長

 θ_n : 到来角(n番目の波)



$$-m$$
番目の素子での受信信号: $r_m = \sum s_n e^{\mathrm{j}\phi_n m} + v_m$

$$r_m = \sum_{n=1}^{N} s_n e^{j\phi_n m} + v_m$$

-受信信号ベクトル:

$$\mathbf{r} = \sum_{n=1}^{N} s_n \mathbf{a}(\theta_n) + \mathbf{v}$$

$$= \mathbf{A}\mathbf{s} + \mathbf{v}$$

$$\mathbf{a}(\theta) = \left[1, e^{j2\pi \frac{d\sin\theta}{\eta}}, \cdots, e^{j2\pi \frac{(N-1)d\sin\theta}{\eta}}\right]^{\mathrm{T}}$$

$$\mathbf{A} = \left[\mathbf{a}(\theta_1) \cdot \cdots \cdot \mathbf{a}(\theta_N)\right]$$

 \Rightarrow 目的: \mathbf{r} から θ_1,\ldots,θ_N を推定

到来方向推定 (2/2)

-部分空間法による到来方向推定:

アンテナ素子数 M >到来波数 N のとき

$$\mathbf{q}_m^{\mathrm{H}} \mathbf{A} = \mathbf{0}, \quad m = N + 1, \dots, M$$

ただし、 \mathbf{q}_m は $E[\mathbf{rr}^{\mathrm{H}}]$ の小さい M-N 個の固有値に対応する固有ベクトル

$$S(\theta) = rac{1}{\sum_{m=N+1}^{M} |\mathbf{a}^{\mathrm{H}}(\theta)\mathbf{q}_{m}|^{2}}$$
 : MUSICスペクトル

 θ を変化させると $\theta = \theta_n$ で大きな値

まとめ

- ・広義定常過程の相関行列の性質の復習
- ・通信の問題で考えるコスト関数は多くの場合非正則であり、ウィル ティンガー微分が有効
- ・無線通信の多くの問題が一般線形回帰モデルを用いて表される
- ・一般線形回帰モデル(およびそれに関連するモデル)に対する基本的な信号処理手法はそれほど多くない
- ・具体的な通信の問題は、それらの手法の特別ケースとして理解すると よい
- ・「文献紹介」に好き勝手なことを書いたので参考にしてほしい